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Density Plots of Hidden Value Unit Activations

Reveal Interpretable Bands
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A particular backpropagation network, called a network of value units, was trained to

detect problem type and validity of a set of logic problems. This network differs from

standard networks in using a Gaussian activation function. After training was success-

fully completed, jittered density plots were computed for each hidden unit, and used to

represent the distribution of activations produced in each hidden unit by the entire training

set. The density plots revealed a marked banding. Further analysis revealed that almost

all of these bands could be assigned featural interpretations, and played an important role

in explaining how the network classi ® ed input patterns. These results are discussed in the

context of other techniques for analyzing network structure, and in the context of other

parallel distributed processing architectures.

KEYWORDS: Connectionism, backpropagation, structure, interpretation, symbolic

logic.

1. Introduction

Parallel distributed processing (PDP) models have been developed for a diverse

range of phenomena, as a survey of almost any journal related to cognitive science

will show. As a result, it has been suggested that connectionism represents a

potential paradigm shift for the computational study of intelligence (e.g.

Schneider, 1987). Unfortunately, there is growing concern that possible PDP

contributions to cognitive science will be severely limited by the fact that trained

networks are extremely dif® cult to interpret (e.g. Dawson & Shamanski, 1994;

Dawson et al., 1993; McCloskey, 1991; Robinson, 1992). This paper addresses

this issue by describing some surprising behaviour of hidden units in a new

connectionist architecture. This behaviour markedly facilitates our ability to inter-

pret the structure of PDP networks.
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2. The Value Unit Architecture

Recently, a variant of the generalized delta rule of Rumelhart et al. (1986) was

developed to train value unit networks, which represent an extension of the generic

PDP architecture (Dawson & Schop¯ ocher, 1992). Value units are characterized

by a non-monotonic activation function (a particular form of the Gaussian), rather

than a sigmoid activation function (like the logistic) that characterizes generic

processing units. (Following Ballard (1986) we call generic processing units

`integration devices’ .) As a result, a value unit will only generate strong activations

to a relatively narrow range of net inputs (see also Ballard, 1986). The Gaussian

activation function that we use is G(netpj) 5 exp[ 2 p (netpj 2 m j)
2], in which netpj is

the net input to unit j produced by pattern p (computed in the same fashion as is

done for standard backpropagation networks) and m j is the mean of the Gaussian

activation function in unit j (and is analogous to the bias of a standard unit that

uses a sigmoid activation function). This function carves what Hartman and

Keeler (1991) call a Gaussian-shaped `hyperbar’ through a pattern space, and as

a result a value unit network can also be differentiated from radial basis function

networks (e.g. Moody & Darken, 1989) whose units carve Gaussian-shaped

`hypercones’ through pattern spaces, and whose units use a distance measure for

net input instead of the more typical dot product (for a detailed distinction

between value unit and RBF networks see Dawson Schop¯ ocher (1992, pp.

27± 30).

Value unit networks have been shown to have a number of advantages over

more traditional multi-layer perceptions including faster learning of linearly non-

separable classes, better generalization and better ability to be `scaled up’ from toy

problems (e.g. Dawson & Schop¯ ocher, 1992; Dawson et al., 1992, 1993; Medler

& Dawson, 1994; Shamanski et al., 1994). In the next section, we describe a newly

discovered characteristic of value units that indicates that value unit networks may

also be very straightforward to interpret

3. Characterizing Hidden Units with Jittered Density Plots

Consider using a relatively large number of patterns to train a PDP network. After

training, one could present each pattern to the network, and record the activity

that each pattern produced in each hidden unit. Then one could use this

information to create a jittered density plot for each hidden unit. In such a plot,

the horizontal position of each plotted point represents the activation produced by

one of the training patterns, and a random vertical jittering is introduced to

prevent points from overlapping (Chambers et al., 1983, pp. 19± 21). The purpose

of the density plot is to provide some indication of the distribution of activities in

the unit produced by the training set.

Because value units are `tuned’ to respond only to a narrow range of net input

values, we predicted (at the start of this research programme) that a density plot

for a hidden value unit would typically reveal two distinct high-density areas or

`bands’ , one near an activation of 0, the other near an activation of 1. The rest of

the density plot was predicted to be empty. This hypothesis was based on the

assumption that value units would generate a strong response to a subset of

patterns that possessed a particular feature, and would generate a zero response to

all the other patterns.

As described in detail below, we have recently observed that the qualitative
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nature of this hypothesis is true: hidden value units generate banded density plots.

However, the behaviour of hidden value units is much more sophisticated and

interesting than we had originally anticipated. First, while density plots of value

unit activations typically reveal distinct bands, it is frequently the case that more

than two bands are evident. Second, each of these bands appears to support a

coherent interpretation: each pattern that falls into a band is characterized by a

speci® c feature or set of features.

To illustrate these properties, we trained a network of value units to solve a

logical inference problem originally studied by Bechtel and Abrahamsen (1991,

pp. 163± 171). The problem set consists of six different types of arguments. The

task of a trained network is, when presented with an argument, to identify its type

and to classify it as being either valid or invalid. We elected to study this particular

problem because it is psychologically relevant, it is suf® ciently rich to make

network interpretation challenging, and it is composed of a reasonably large

number of stimulus patterns.

4. Method

4.1. Training Set

We trained the network using Bechtel and Abrahamsen’ s (1991) original stimulus

set, which they kindly provided to us. Each pattern in the training set was a logical

argument consisting of two sentences and a conclusion. The ® rst sentence was

composed of a connective and two variables; the second sentence and the

conclusion were each composed of a single variable. Each of the four variables in

an argument could be negated or not negated. The problem set consisted of four

classes of problem (modus ponens, modus tollens, alternative syllogism and

disjunctive syllogism); there were two different versions of each AS and DS

syllogism type. Table I illustrates examples of valid arguments for each problem

type, and also introduces the descriptive notation that we adopted to aid network

interpretation.

Each argument was represented as a binary pattern of activity in a set of 14

input units (see Figure 1) using the representational scheme adopted by Bechtel

and Abrahamsen (1991). Different examples of each argument type were con-

structed by selecting two variables from a set of four (A,B,C,D) and by allowing

variables to be negated. For each type of argument, 48 different valid instances

(the conclusion follows from the two sentences) and 48 different invalid instances

(the conclusion does not follow from the two sentences) were used, creating a total

training set of 576 patterns.

4.2. Network Architecture

A network of value units with 14 input units was trained on the problem set

described above. The network had three output units. Two of the output units

were used to represent one of four argument types (modus ponens, modus tollens,

alternative syllogism, disjunctive syllogism); the third was used to indicate argu-

ment validity. In contrast to Bechtel and Abrahamsen’ s (1991) original network,

which used two layers of 10 sigmoid hidden units, the value unit network had a
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Table I. Examples of valid instances of each of the argument types in the

problem set. The accompanying descriptive notation was used as an aid for

interpreting network structures. Note that in the problem set any of the

variables (i.e. S1(V1), S1(V2), S2, C) could be negated. If two variables are

both positive or are both negative, we say that they have the same sign.

Otherwise we say that they are opposite in sign. In the problem set, valid MP

and MT arguments were turned into invalid ones by interchanging the letter

for S2 and the letter for the conclusion. For all other problem types, valid

arguments were turned into invalid ones by interchanging the sign of S2 and

the sign of the conclusion

Problem Descriptive

Problem type example notation

Modus ponens (MP) If A then B Connective: IF ¼ THEN

A S1(V1): A

S1(V2): B

Therefore B S2: A

C; B

Modus tollens (MT) If A then C Connective: IF ¼ THEN

Not C S1(V1) A

S1(V2): C

Therefore not A S2: C

S2 is negated

C is negated

Alternative syllogism (AS) D or A Connective: OR

Type 1 Not D S1(V1) A

S1(V2): A

Therefore A S2: D

S2 is negated

C: A

Alternative syllogism (AS) B or C Connective: OR

Type 2 Not C S1 (V1): B

S1(V2): C

Therefore B S2: C

S2 is negated

C: B

Disjunctive syllogism (DS) Not both C and D Connective: NOT BOTH ¼ AND

Type 1 C S1(V1: C

S1(V2): D

Therefore not D S2: C

C: D

C is negated

Disjunctive syllogism (DS) Not both A and D Connective: NOT BOTH ¼ AND

Type 2 D S1(V1): A

S1(V2): D

Therefore Not A C: A

C is negated

single layer of 10 hidden units (in general, because of the non-monotonic nature

of the value unit’ s activation function, fewer hidden units are required to solve

problems than are required by the standard architecture). Pilot studies had shown

that a network with 10 hidden value units would reliably converge to a solution to

the training problem, while nets with smaller numbers of hidden units would not.
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Figure 1. The network architecture for solving the logic problem, illustrating the

functional role of the input and output units. In the integration device network, 15

hidden units were used, while only 10 hidden units were used in the value unit

network. For both networks, the layer of input units was fully connected to the layer

of hidden units, which in turn was fully connected to the output unit layer. The

following representational scheme for input patterns was used, after Bechtel and

Abrahamsen (1991, p. 169): (1) for the two connective bits, values of [1,1]

represented `IF ¼ THEN’ , [0,1] represented `Or’ , and [1,0] represented `NOT

BOTH ¼ AND’ . (2) For any pair of input units representing a variable, [0,1]

represented `A’ , [1,0] represented `B’ , [1,1] represented `C’ , and [0.0] represented

`D’ . (3) If an input unit representing negation had a value of 1, then the variable

following this bit was negated. If the unit had a value of 0, then the following variable

was not negated.

4.3. Training Procedures

The network of value units was trained with the Dawson and Schop¯ ocher (1992)

extension of the generalized delta rule, using a learning rate of 0.03 and a

momentum of 0.0. Network weights and biases (i.e. the means of the Gaussian

function) were randomly set in the same range as the integration device network.

However, in the simulations reported here, biases were not altered during learning.

(Similar results to those reported here are obtained when biases are trained, and

when they are held constant at zero.) While holding biases constant tends to slow

learning down in value unit networks, it also increases the number of connection

weights that fall near zero; in general, holding biases constant does not lead to

learning in generic networks (Dawson et al., 1992). Network connections were

updated after every pattern presentation, and pattern presentation was randomized

every epoch. The network was trained until a `hit’ was recorded for every output

unit for every pattern in the training set. We operationalized a hit as being an



172 I. S. N. Berkeley et al.

activation of 0.9 or greater when the desired output was 1, and as being an

activation of 0.1 or less when the desired output was 0. Convergence was achieved

in 5793 epochs.

5. Results

After the network was trained to convergence, the stimulus set was presented once

again, and the activity produced in each hidden unit was recorded. This infor-

mation was then used to create jittered density plots for each hidden unit.

Figure 2 depicts the density plots for the 10 hidden units of the value unit

network. First, it shows that all but one of the hidden units (hidden unit 1)

produced density plots that were markedly banded. Second, all of the density plots

show a very high density of patterns, producing zero or near zero levels of

activation, as is revealed by the narrow dark line on the left side of each plot.

Third, most of the density plots have three or more de® nite bands (hidden units

0, 2, 4, 5, 7 and 8).

5.1. Why Do Value Units Produce Bands?

Why did bands appear in the value unit network? Unlike standard units that

employ a sigmoid-shaped activation function, value unitsÐ because of the bell-

shape of their activation functionÐ will only respond to a limited range of net

inputs. This places constraints on the patterns of connectivity that a value unit

network can use to solve a pattern classi ® cation problem. As a result, value units

frequently produce balanced connection weights that fan into the same hidden

unit. When this occurs, one connection weight will have the value x and will be

balanced by another connection weight that has the value 2 x.

This balancing of connection weights appears to be responsible for banding.

When balancing of weights occurs, one can activate many different patterns of

input activity that produce the same net input, and fall into the same band of

hidden unit activity, because the balancing cancels out different input signals. As

Figure 3 shows, units that demonstrate very nice banding are characterized by a

great deal of connection weight balancing, while units that do not demonstrate

banding do not exhibit this balancing. This raises the important possibility that

other PDP architectures that use tuned activation functions, such as RBF networks

(e.g. Moody & Darken, 1989), may also exhibit banding when density plots of

hidden unit activities are constructed.

5.2. Identifying De® nite Features

The fact that the value unit plots are very dense at zero activation, and the fact that

they are banded, were consistent with our original predictions. However, we were

quite surprised when density plots revealed three or more distinct bands. To

investigate this phenomenon further, for each hidden unit we identi® ed the

members of the training set that comprised each band in the density plot. Then,

we attempted to identify common attributes of patterns belonging to the same

band. These common attributes, which we call `de® nite features’ , were identi® ed

by computing correlations among the 14 binary features for the patterns that fell

into a particular band. A de® nite unity feature was de® ned as an input bit that had
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Figure 2. The jittered density plots for each of the 10 hidden units obtained for the

value unit network after it was trained to convergence. Letters are used as labels for

the observed bands, and correspond to the labels used in Table II.
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Figure 3. Balancing of the connection weights into a hidden value unit produce

banding. (a) The density plot for hidden value unit 1, which did not produce much

banding. (b) Histogram of the connection weights leading into this unit. Each hashed

bar represents the weight of a single positive connection, and each white bar

represents the weight of a single negative connection. The asymmetry in this ® gure

shows a lack of balance between positive and negative connections. (c) The density

plot for hidden value unit 4, which demonstrated excellent banding. (d) Histogram

of the connection weights leading into hidden value unit 4 show excellent balancing,

as indicated by a much greater degree of symmetry than in (b). In general, value units

that demonstrate banding have a great deal of balancing between positive and

negative connection weights.

a constant value for all patterns within the band. A de® nite binary feature was

de® ned as a perfect negative or perfect positive correlation between pairs of binary

features, the former representing the fact that two bits were always opposite in

value, the latter representing the fact that two bits were always equal in value.

Remarkably, most of the bands illustrated in Figure 2 produced de® nite features

de® ned using these objective, quantitative de® nitions. Furthermore, because each

input bit is associated with a known interpretation, each of the bands that revealed

de® nite features had a very basic and elegant interpretation.

For example, consider the density plot for hidden unit 8 in Figure 2, which is

composed of three different bands. All of the patterns that fall into band A in the

® gure (activation 5 0.03) contain the connective OR. All of the patterns that fall

into band B (activation from 0.10 to 0.13) contain the connective IF ¼ THEN.
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All of the patterns that fall into band C (activation from 0.80 to 0.85) contain the

connective NOT BOTH ¼ AND. In general, then, this unit is a connective

detector, and adopts three distinct levels of activity to signal that one of three

different connective types has been detected. Table II provides the interpretations

of the bands for each of the hidden units.

5.3. Using Bands To Predict Network Behaviour

The preceding analyses have shown that the activations of hidden value units can

be organized into identi® able bands, which are in turn associated with inter-

pretable de® nite features. However, an important question remains: Do these

bands play any role in explaining how the network solves the problem? For

example, it is possible that these bands are merely epiphenomenal, and that in

order to account for network performance one must ignore the bands and still rely

on speci® c activity values produced by patterns.

In order to address this issue, we described the patterns presented to the

network in terms of the bands of activity that they produced for each hidden unit,

instead of describing the patterns in terms of their input features. We found that

if one only knows the median activity of each hidden unit band that a particular

pattern belongs to, then one can still make very accurate predictions about network

outputs.

For example, when described in terms of activity bands, every valid modus

ponens problem produced a single pattern of hidden unit activity in the network:

[0-A, I-A, 2-B, 3-A, 4-A, 5-A, 6-A, 7-B, 8-B, 9-A], where 0-A means `produced

activity in Band A of hidden unit 0’ . Using Table II, we can replace each of these

bands with its median level of activity, and represent this activity pattern as the

vector [0, 0, 0.46, 0, 0, 0, 0, 0.54, 0.11, 0]. The vector of weights from the 10

hidden units to output unit 0 is [0.71, 0, 2 1.24, 0, 2 0.70, 0.72, 0.55, 2 0.48,

2 2.18, 2 0.03]. The dot product of this weight vector with the hidden unit

activity vector produces a net input of 2 1.0964, which in turn will produce an

activity of 0.005 in output unit 0 because it has m 5 0.23 in its Gaussian equation.

The vector of weights from the 10 hidden units to output unit 1 is [0.62, 2 0.01,

2 1.06, 0.00, 2 0.86, 0.89, 2 0.33, 0.24, 2.32, 0.01]. The dot product of this

weight vector with the activity vector produces a net input of 2 0.1028, which in

turn will produce an activity of 0.998 in output unit 1 because it has m 5 2 0.13.

Finally, the vector of weights from the 10 hidden units to output unit 2 is [2.14,

4.14, 2 0.89, 1.29, 1.66, 2 1.70, 2 0.40, 0.91, 0.08, 1.21]. The dot product of

this weight vector with the activity vector produces a net input of 0.0908, which

in turn will produce an activity of 1.000 in output unit 2 because it has m 5 0.10.

To summarize this example, knowing only the medians of the bands of activity

that valid modus ponens problems fall into, we predict that the network’ s response

to any of these problems will be [0.005, 0.998, 1.00]; the desired network outputs

[0, 1, 1]. Similar accounts can be provided for banded patterns of hidden unit

activity provided by other valid problem types. In short, our knowledge of the

hidden unit activity bands provides an excellent predictor of network output for

these problems, indicating that the bands play an important role in explaining

network behaviour, and that they are not merely epiphenomenal.
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Table II. Interpretations of bands in the hidden unit density plots

Unit Number of Median
number Band patterns activity Interpretation of de® nite features

0 A 456 0.00 No de® nite features
B 72 0.77 S1(V1) is the same letter as S2

S1(V2) is the same letter as C
The connective is not IF ¼ THEN

C 48 0.99 S1(V1) is the same letter as S2
S1(V1) is opposite in sign to S2
S1(V2) is the same letters as C
S1(V2) is opposite in sign to C
The connective is IF ¼ THEN

1 A 576 0.00 No de® nite features
2 A 456 0.00 No de® nite features

B 96 0.46 S1(V1) is the same letter as S2
S1(V1) is the same sign as S2
S1(V2) is the same letter as C
The connective is not NOT BOTH ¼ AND

C 24 0.99 S1(V1) is the same letter as S2
S1(V1) and S2 are not negated
S1(V2) is the same letter as C
S1(V2) is opposite in sign to C
The connective is NOT BOTH ¼ AND

3 A 456 0.00 No de® nite features
B 12 0.81 S1(V1) is negated

S1(V1) is the same letter as C
S2 and C are not negated
S1(V2) is the same letter as S2
The connective is OR

C 86 0.99 S1(V1) is the same letter as C
S1(V2) is the same letter as S2

4 A 431 0.00 No de® nite features
B 48 0.56 S1(V1) is the same letter and sign as C

S1(V2) is the same letter and sign as S2
The connective is IF ¼ THEN

C 48 0.81 S1(V1) is the same letter and sign as C
S1(V2) is the same letter as S2
S1(V2) is opposite in sign to S2
The connective is NOT BOTH ¼ AND

D 48 0.99 S1(V1) is the same letter and sign as C
S1(V2) is the same letter as S2
S1(V2) is opposite in sign to S2
The connective is OR

5 A 456 0.00 No de® nite features
B 24 0.51 S1(V1) is the same letter as C

S1(V1) is opposite in sign to C
S1(V2) is the same letter as S2
S1(V2) and S2 are not negated
The connective is NOT BOTH ¼ AND

C 96 0.97 S1(V1) is the same letter as C
S1(V2) is the same letter as S2
S1(V2) is opposite in sign to S2
The connective is not NOT BOTH ¼ AND

6 A 384 0.00 The connective is not OR
B 192 1.00 The connective is OR

7 A 96 0.06 S2 is negated
The connective is NOT BOTH ¼ AND

B 384 0.54 The connective is not NOT BOTH ¼ AND
C 96 0.99 S2 is positive

The connective is NOT BOTH ¼ AND
8 A 192 0.03 The connective is OR

B 192 0.11 The connettive is IF ¼ THEN
C 192 0.82 The connective is NOT BOTH ¼ AND

9 A 512 0.00 No de® nite features
B 64 0.95 No de® nite features
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5.4. The `Rules in the Network’ s Head’

Another advantage of representing patterns as the set of hidden unit activity bands

to which they belong is that these patterns can be viewed as a `rule’ that the

network uses to make judgements about different types of logic problems. This is

because this pattern represents a set of features which, when combined, dictate the

network’ s response to the pattern. Importantly, by identifying the `logical rules’ in

the network’ s head’ we can raise interesting empirical questions about how

humans might learn to deal with these logic problems.

Table III presents the traditional rules of inference (in our notation) of all of

the valid problem types, as well as the bands of activity produced in the network

by these problems. By providing the interpretation for each of these bands from

Table II, one can construct the rules that the network uses for this task (see Table

III). There are several important points that arise from studying this table. First,

the network has a very small number of rules for identifying valid problem types:

it has one rule for modus ponens, one rule for modus tollens, two rules for

alternative syllogisms and three rules for disjunctive syllogisms. Second, some of

the rules in the network are equivalent to the traditional rules of inference used in

natural deduction systems (cf. Bergmann et al., 1990). The network has learned

the traditional rules of inference for modus ponens. modus tollens, and one version

of alternative syllogism. Given this, we would expect that the network’ s perform-

ance would generalize well to patterns that it had not been trained on (e.g. by

de® ning new variables by using continuous inputs to the relevant input units.)

Third, the network learned a number of rules of inference which are signi® cantly

different from the traditional ones. One of the rules for alternative syllogisms and

one of the rules for disjunctive syllogisms are what might be termed `default’ rules.

Default rules work by identifying the main connective, and require that no other

de® nite features are present. The other two rules for disjunctive syllogisms are

similar to the traditional rules, but require in addition that S2 is not negated.

This last point is important for the psychological relevance of this type of

model. It has long been known that the formal rules of inference do not always

provide good accounts of how humans solve logic problems (e.g. Johnson-Laird,

1983). Instead, humans appear to deal with these problems by building ad hoc

mental models that generally lead to correct solutions, though the models them-

selves have little resemblance to logical formalisms. Some of the rules learned by

the network have this ad hoc appearance. For example, one of the rules for a valid

alternative syllogism (the default rule) can be described as `If the connective is OR,

and no other features that 1 know about are present, then it must be a valid AS’ .

It is easy to imagine that this kind of rule might be used by a student who is

learning about this type of problem, but is still unsure about its formal character-

ization.

In point of fact, the results in Table III raise some interesting empirical

questions that could be addressed by a cognitive psychologist. If human subjects

were to learn to solve these logical questions, would they tend to develop ad hoc

mental models for the AS and DS problems, but not to do so for MP and MT?

Would human subjects treat DS problems with negated S2 differently than DS

problems with non-negated S2? Would human subjects develop a relatively small

number of rules, paying attention to the same features as the model? Note that the

fact that these questions can be raised depends on two things. The ® rst is that

unlike symbolic models of logic (e.g. Rips, 1994) in which the logical rules are
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programmed in, the connectionist network has to learn how to solve the problems,

raising the possib ility that surprising new rules will be discovered. The second is

that the discovery of these rules in the network depends upon our ability to

interpret its structure.

5.5. Relation to Other Interpretive Techniques

While some researchers have questioned the usefulness of connectionist models

because they are dif® cult to interpret (e.g. McCloskey, 1991; Robinson, 1992),

this does not mean that connectionists themselves do not attempt to analyze the

internal structure of their networks. In this section, we brie¯ y consider the

relationship between some other methods of network interpretation and our

approach to interpreting hidden value unit activity bands.

Some researchers have successfully interpreted network structure by examining

the relative sizes of connection weights that feed into a network (e.g. Hinton,

1986). This approach has the advantage of being very simple to do, because it

typically involves depicting connection weights in some pictorial fashion that is

easy to interpret (e.g. a Hinton diagram). However, this method is not without

limitations. For example, in order to interpret a unit’ s function by looking at the

connection weights that feed into it, one must know what feature is associated with

the connection. Unfortunately, such labels might be dif® cult to assign in networks

with multiple layers of hidden units. This is because one may not know with

certainty what features are encoded in the connections between adjacent layers of

hidden units, for these features in turn depend upon interpretations of other

hidden units (see also Hanson & Burr, 1990, Section 5.7). In general, these kinds

of problems will always arise when interpretations are based upon the analysis of

network structure (i.e. the `network space’ ) instead of the analysis of stimulus

features (i.e. the `pattern space’ ).

We believe that the interpretation of hidden value unit activity bands has

advantages over the examination of connection weights. First, it is just as simple

to accomplish, as it only requires one to graph density plots of hidden unit

activities in order to identify bands. Second, it is less subjective: once bands are

identi ® ed, de® nite features are discovered by computing correlations among

pattern features. Third, the analysis of bands is always done in pattern space,

looking for features shared by patterns that produce the same band of activity in

a hidden unit. As a result. the interpretation of bands can still be accomplished in

networks that have more than one layer of hidden units.

Other researchers have approached the problem of network interpretation by

applying multivariate statistics to connection weights or to hidden unit activations

(for a review, see Hanson & Burr, 1990). While these techniques are very

powerful, they are not without their drawbacks. First, they assume linear relation-

ships among variables: in general, such relationships are not true of PDP networks.

Second, many of the design decisions required to, say, factor analyze some aspect

of a trained network are as complex as the design decisions used to construct the

original network. In particular, when doing factor analysis one has to decide how

many factors to extract, what kinds of factors to extract, whether to rotate the

factor structure and (if desired) what kind of rotation to perform (for an introduc-

tion to such issues, see Cattell, 1978). Third, because of the complexity of the

design decisions underlying the multivariate analysis, there is no guarantee that the

features that are revealed by this analysis are actually valid (e.g. Eysenck, 1967).
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Different researchers who, for example, choose different criteria for factor rotation,

would propose completely different interpretations of the same network.

In comparison, our approach to interpreting bands of hidden value unit

activations appears to have several advantages over traditional multivariate analyti-

cal techniques. First, the bands are determined after hidden unit activations have

been calculated, and as a result incorporate the non-linear transformation of the

net input provided by the hidden unit. Second, the bands that are interpreted are

provided by the network itself, and are not an artefact of additional assumptions

required by an analytic technique. In our approach, the network itself provides a

natural clustering or factoring of the input patterns, which we then analyze.

5.6. Does Banding Occur in Other Problems?

To this point, we have concentrated on a single example to make the point that

hidden value units can organize their responses to a pattern set into interpretable

bands. However, it is also important to show that the banding phenomenon is not

limited to a particular problem.

Indeed, we have found hidden value unit banding in a variety of other

problems. Figure 4 illustrates some sample density plots for all of the hidden units

in networks trained on three different problems: 7-bit majority, 6-bit parity and a

variation of Hinton’ s (1986) kinship problem. As can be seen from inspecting this

® gure, the density plots typically are organized into a distinct pattern of bands.

However, the mere presence of bands is not suf® cient to make them of interest to

us. Are the bands illustrated in Figure 4 associated with speci® c interpretations, as

was the case with the logic network described earlier? Again, this question can be

answered af® rmatively.

Figure 4(a) illustrates the density plot for the single hidden unit that a value

unit network requires to determine whether more than half of 7 input units have

been activated. (The non-monotonic nature of the value unit’ s activation unit

results in a value unit network requiring a hidden unit for this linearly separable

problem; for more details see Shamanski et al., 1994.) The density plot is

organized into six distinct bands. With the exception of the leftmost band, each

band contains all patterns that have a speci® c number of `on’ bits (indicated by the

number above each band in the ® gure). The leftmost band includes all patterns

that have 5, 6 or 7 bits turned on. In general, this hidden unit is a `minority’

detector, generating a response of 0.2 or greater to those patterns in which a

minority of the bits are activated; the response of this hidden unit is then inverted

by the network’ s output unit.

Figure 4(b) presents density plots for the two hidden units that are required by

a value unit network to detect odd parity in 6-bit input patterns. Again, each band

is associated with a de® nite feature. Both hidden units organize the input bits into

two groups. Group P consists of input bits 0 and 5; both of these bits have positive

connection weights to each hidden unit (equal to 0.82 for hidden unit 0 and to

0.49 for hidden unit 1). Group N consists of the other four input bits, which have

weights to the hidden units that are equal in magnitude but opposite in sign to

those associated with the group P bits (i.e. weights of 2 0.82 for hidden unit 0 and

of 2 0.49 for hidden unit 1). Let us de® ne the balance of a pattern as the

difference between the number of group N bits that it has turned on and the

number of group P bits that it has turned on. Note that balance, de® ned in this

way, is correlated with parity: if balance is odd, then parity is odd, and if balance
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is even, then parity is even. The bands in the two Figure 4(b) density plots mediate

parity detection by encoding balance: each band is associated with patterns that

have a speci® c balance value, as indicated in the ® gure.

A concept’ s representation is distributed if it `is represented by a pattern of

activation across an ensemble or set of units; by design no single unit can convey

that concept on its own’ (Bechtel & Abrahamsen, 1991, p. 51). Clearly, parity is

an excellent example of a distributed concept because one must consider all input

units together to determine whether an odd or even number of them are activated,

and no single input unit can signal the parity of the entire pattern. Thus, the

results in Figure 4(b) are important because they demonstrate that value unit

networks can produce bands for distributed representations; banding does not

require a local encoding of input information.

Figure 4(c) provides the density plots for the six hidden value units trained on

a version of Hinton’ s (1986) kinship problem. In the original problem, a complex

network (36 input units, three layers of 6, 12 and 6 hidden units, 24 output units)

was trained to encode kinship relationships in two (identical) family trees (104

training patterns). Purely local encoding was used to present the name of a person

and a relationship as input to the network. The network was trained to generate

the names of the person or persons that completed the relationship. For example,

when provided the pattern that represented `James has-father’ , the network was

trained to generate the pattern representing James’ father, `Andrew’ . In our version

of the problem, we have used a distributed encoding that has permitted us to train

a smaller network (22 input units, 6 hidden units, 10 output units) to accomplish

this task for six family trees (312 training patterns). A complete interpretation of

the resulting network is beyond the scope of the current paper. Let us simply note

some of the highlights:

(1) Each band in hidden unit 0 and hidden unit 4 is associated with a speci® c

family.

(2) Each band above 0.0 in hidden unit 1 picks out a speci® c relationship that

points to a second generation person.

(3) Each band above 0.0 in hidden unit 2 picks out a speci® c relationship to a ® rst

generation person.

(4) Each band in hidden unit 3 is associated with an input person from a

particular location in the family tree (e.g. `the ® rst person in generation 2’ ).

(5) Each of the non-zero bands for hidden unit 5 captures a speci® c feminine

relationship (e.g. `has-mother’ , `has-sister’ ).

The results reported in this section clearly show that the production of inter-

pretable bands in the density plots of hidden value units is not an artefact of the

Bechtel and Abrahamsen (1991) logic problem. It is important to note, however,

that we have not found banding for every problem that we have studied. For

example, bands were not observed in a network that was trained to differentiate

Alzheimer’ s patients from control subjects on the basis of single positron emission

computed tomography measures (Dawson et al., 1994). Early on, we suspected

that this was because the inputs for this problem were continuous, and we

hypothesized that banding of density plots may only occur when a value unit

network is trained to discover mappings from binary inputs to binary outputs.

However, pilot results suggest that this hypothesis is incorrect. In one study, we

converted the binary patterns for the parity problem into continuous patterns by

replacing all zeros with real values randomly selected from the range 0.0 to 0.49,
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Figure 5. The jittered density plots for each of the 15 hidden units obtained for a

standard network after it was trained to convergence. Note the absence of banding.

and by replacing all ones with real values randomly selected from the range 0.50

to 1.0. Banding still occurred. This is an important ® nding, because it suggests

that we will still be able to see banding if additional layers of hidden units are

added to the network; note that there is no guarantee that the inputs to these

additional layers would be binary. However, this result does not explain why

banding has not yet been found in the Alzheimer’ s data set. Our current research

is attempting to determine the necessary and suf® cient conditions for the pro-

duction of banding in value unit density plots.

5.7. Can Bands be Found in Other Architectures?

Earlier, it was suggested that the interpretation of hidden unit activity bands may

have certain advantages over other techniques for analyzing network structure. It

is therefore important to consider whether these bands might appear when

examining the activities of hidden units in other PDP architectures.

The most commonly used feedforward network is one in which there is a single
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layer of hidden units, and the units are characterized by a sigmoid-shaped

activation function. We have not yet found substantial banding in the hidden units

of this type of network. For example, Figure 5 presents the jittered density plots

for such a network with 15 hidden units which was successfully trained on the

Bechtel and Abrahamsen (1991) logic problem. The most common pattern in

these plots was two dense regions of activity near activation of 0 and 1, with an

even distribution of activity `smeared’ across the rest of the plot (hidden units 0,

2, 3, 4, 9, 10 and 13). The next most common pattern was a single dense region

of activity near 0 activation accompanied by a uniform smear across the rest of the

plot (hidden units 1, 5, 6, 12 and 14). The plot for hidden unit 8 was simply a

uniform smear across the entire plot, with no evident bands. Only hidden unit 7

demonstrated any distinct banding, with narrow bands at 0 and 1 activations, and

a sparse, broad band ranging from an activation of 0.2 to an activation of 0.6.

While we have not found bands for hidden units in the standard architecture,

this is not in principle a limitation of units that employ a sigmoid-shaped activation

function. First, some circuits in which two units with sigmoid activation functions

serve as input units to a third are logically equivalent to a single value unit

(Dawson & Schop¯ ocher, 1992). Thus, in a standard network in which two layers

of hidden units are used, we would not be surprised to ® nd interpretable bands

emerging in the second layer of hidden units. Second, the emergence of bands in

our architecture appears to be a consequence of the activation function’ s tuned

nature, which places constraints on the patterns of connectivity that solve pattern

recognition problems. We would expect that other architectures that use tuned

activation functions, such as RBF networks (e.g. Moody & Darken, 1989), would

also reveal interpretable bands of hidden unit activity.

In summary, we do not believe that the value unit architecture is the only one

that will produce interpretable bands. Our hope is that researchers interested in

other architectures will be able to ® nd this kind of structure in their networks, and

as a result be able to provide detailed interpretations of how their networks

function.

6. Conclusion

Mozer and Smolensky (1989, p. 3) have noted that ª one thing that connectionist

networks have in common with brains is that if you open them up and peer inside,

all you can see is a big pile of gooº . Indeed, some researchers believe that this is

in principle a limitation of PDP networks that is due to their non-linear activation

functions and their development of distributed representations: ª We may have to

accept the inexplicable nature of mature networksº (Robinson, 1992, p. 655).

In contrast to this view, the results that were presented above suggest that the

value unit architecture can produce interpretable structures without requiring the

application of multivariate statistics. Simple density plots of hidden value unit

activations revealed distinct bands that were assigned coherent interpretations.

This indicates that the value unit architecture may be extremely valuable to

researchers in cognitive science who are not content to view their networks as

unassailable black boxes.
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