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Abstract

Probability matching occurs when the behavior of an agent matches the likelihood of occur-

rence of events in the agent’s environment. For instance, when artificial neural networks

match probability, the activity in their output unit equals the past probability of reward in the

presence of a stimulus. Our previous research demonstrated that simple artificial neural net-

works (perceptrons, which consist of a set of input units directly connected to a single output

unit) learn to match probability when presented different cues in isolation. The current paper

extends this research by showing that perceptrons can match probabilities when presented

simultaneous cues, with each cue signaling different reward likelihoods. In our first simula-

tion, we presented up to four different cues simultaneously; the likelihood of reward signaled

by the presence of one cue was independent of the likelihood of reward signaled by other

cues. Perceptrons learned to match reward probabilities by treating each cue as an inde-

pendent source of information about the likelihood of reward. In a second simulation, we vio-

lated the independence between cues by making some reward probabilities depend upon

cue interactions. We did so by basing reward probabilities on a logical combination (AND or

XOR) of two of the four possible cues. We also varied the size of the reward associated with

the logical combination. We discovered that this latter manipulation was a much better pre-

dictor of perceptron performance than was the logical structure of the interaction between

cues. This indicates that when perceptrons learn to match probabilities, they do so by

assuming that each signal of a reward is independent of any other; the best predictor of per-

ceptron performance is a quantitative measure of the independence of these input signals,

and not the logical structure of the problem being learned.

Introduction

A perceptron [1, 2] is a simple artificial neural network whose input units send signals directly

to an output unit layer through weighted connections. Each output unit then uses a nonlinear

activation function to convert its incoming signal into a response ranging from 0 to 1. Modern

PLOS ONE | DOI:10.1371/journal.pone.0172431 February 17, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dawson MRW, Gupta M (2017)

Probability matching in perceptrons: Effects

of conditional dependence and linear

nonseparability. PLoS ONE 12(2): e0172431.

doi:10.1371/journal.pone.0172431

Editor: Eleni Vasilaki, University of Sheffield,

UNITED KINGDOM

Received: October 27, 2016

Accepted: February 4, 2017

Published: February 17, 2017

Copyright: © 2017 Dawson, Gupta. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All training files and

summaries of simulation results have been

deposited at Dryad (doi:10.5061/dryad.34pb0).

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0172431&domain=pdf&date_stamp=2017-02-17
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.34pb0


perceptrons [3] typically use the logistic activation function

aj ¼
1

1þ e� ðnetjþyjÞ
ð1Þ

where aj is the activity of output unit j, netj is the incoming signal, and θj is the bias of output

unit j’s logistic activation function. Perceptrons originally served as systems for assigning

input instances to discrete categories [1, 2]; more recent accounts continue to describe them

from this perspective [4–6]. These accounts note that perceptrons can only solve linearly sepa-

rable categorization problems [7]; more complex problems require networks that include hid-

den units.

However, perceptrons are still important to particular research domains, such as animal

learning. When we interpret perceptron outputs as probabilities, perceptrons provide

important new insights to the animal learning literature [8–11]. Furthermore, there exists a

formal equivalence between models of perceptron learning and mathematical accounts of

classical conditioning [12–14]. In these accounts, one translates the neural network learning

rule into the animal learning rule by operationalizing the notion of reward as follows: a sin-

gle-output unit network is ‘rewarded’ when its output unit is trained to turn on, and is ‘not

rewarded’ when its output unit is trained to turn off. From this perspective, a single-output

unit perceptron can be viewed as a simple instance of a reinforcement learning network

[15].

The current paper extends a previous study [16] that explored the ability of modern percep-

trons to match probabilities. It used four different input units to represent the presence or

absence of four different cues, each of which signaled a different probability of reward. Percep-

trons learned to match these reward probabilities, so that when the presentation of a particular

cue caused the perceptron to generate output activity that equaled the reward probability asso-

ciated with the cue. Furthermore, when reward likelihoods changed in the midst of training,

perceptrons quickly learned to match the new probabilities.

One limitation of this previous study was that only one input unit was turned on at any

given time. A more realistic task involves presenting more than one cue at the same time, with

each cue independently signaling a different likelihood of reward. For a perceptron to match

probabilities in this situation, it must learn to combine these different sources of information.

The purpose of the current paper is to explore probability matching of perceptrons when they

receive multiple sources of evidence.

This paper proceeds as follows: First, it reports on the ability of perceptrons to match proba-

bilities when presented simultaneous cues. Second, it relates the structure of these trained net-

works to a well-understood statistical model, logistic regression. Third, it explores probability

matching under conditions that challenge perceptron abilities. Fourth, it considers the impli-

cations of the structure of these probabilistic perceptrons, from the perspective of pattern clas-

sification and from the perspective of animal learning experiments.

Simulation 1: Independent cues

Method

Network architecture and training set. We trained perceptrons comprised of a single

output unit and four input units. The input units represented the presence or absence of four

different cues. The use of four cues emulated the structure of the perceptrons studied in our

previous research [16]; by using additional input units, one could easily train a perceptron to

process more than four cues. A binary representation indicated the presence or absence of

cues. For example, the input pattern (1, 0, 0, 0) indicates the presence of Cue A and the absence
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of all other cues. We used each of the sixteen possible cue configurations (given this binary

coding) in a training set.

Each cue signals a probability of network reinforcement. The presence of Cue A indicated a

reward probability of 0.20, while Cue B, Cue X and Cue Y each signaled reward probabilities

of 0.40, 0.60, and 0.80 respectively. These values are identical to those studied previously [16].

In this first simulation, the probabilities associated with the various cues were conditionally

independent of one another. That is, the reward associated with the presence of one cue was

determined independently of the reward associated with the presence of any another cue; of

course, if different cues signaled a reward, the network was only rewarded once.

We constructed five different training sets. Each training set consisted of 1600 different

input patterns; we replicated each of the 16 different possible cue configurations 100 times in

a training set. Each input pattern was either rewarded (desired output activity = 1) or not

(desired output activity = 0). We determined the reward for each pattern using the following

stochastic procedure: We processed each cue separately. If a cue was present, we generated a

random number between zero and one, and rewarded the pattern if the random number was

less than or equal to the probability of reward associated with the cue. When this procedure

produced a reward for more than one of the present cues, the pattern was only rewarded once.

There was no reward if all four cues were absent. In using this procedure, each of our training

sets is a random sample from the population whose cue probabilities were given earlier.

By constructing the training sets with this procedure, the problem represented by a training

set is not linearly separable, because different instances of the same input pattern are associated

with opposite rewards. Furthermore, by processing each cue independently conditional inde-

pendence between the four cues is established. Because of this conditional independence, the

addition rule for probabilities [17] can be used to check the probability structure of a training

set, because this rule provides the expected likelihood of reward when more than one cue is

present in an input pattern. For instance, for a pattern that includes both Cues A and B, and

excludes both Cues X and Y, the probability of reward is:

PðRjABÞ ¼ PðRjAÞ þ PðRjBÞ � PðRjAÞ � PðRjBÞ ð2Þ

In Eq 2, the various probabilities are those that define the reward structure for the population

(e.g. P(R|A) = 0.20 and P(R|B) = 0.40). We used χ2 tests to compare the probability of reward

for each type of pattern in a training set to the expected probability generated by the addition

rule for multiple cues. None of the training sets differed significantly from the expected values.

Network training. We trained 20 different perceptrons on each of the five training sets

using a gradient descent rule with a learning rate of 0.05, with connection weights randomly

set in the range from -0.1 to 0.1 prior to training, and with the bias θ of the logistic activation

function initialized to 0. We chose a small learning rate of 0.05 to be able to examine the

behavior of the network during learning (see Fig 1 below); even with a small learning rate,

networks learned to match probabilities very quickly. We chose this learning rate to be

small enough to make our learning algorithm a reasonable approximation of the mathemat-

ics of gradient descent, but at the same time to be large enough for network learning to suc-

ceed after a reasonable amount of training. However, this particular learning rate is not

critical for our results; similar probability matching behaviors in networks occur when

learning rates of 0.001, 0.1 or 0.25 are used.

Training was accomplished with the Rosenblatt program that is available as freeware [18].

During one epoch of training, we presented a network each of the 1600 patterns; the learning

rule modified connection weights and the bias after each pattern presentation. We randomized

the order of input pattern presentations every epoch. Training proceeded for 2500 epochs; we
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then recorded network responses to each of the 16 different possible input patterns, as well as

the structure of the perceptron.

Results

Network performance. Perceptron responses provide excellent estimates of the probabil-

ity structure of the training sets. To assess probability matching, we computed the squared cor-

relation (R2) between a perceptron’s responses to each of the 16 different types of input

patterns and the actual reward probabilities for these patterns in the training set. Across the

100 perceptrons, the average R2 was 0.953 (SD = 0.014), indicating that typical network

responses account for over 95% of the variance in the actual probabilities. Table 1 provides the

performance of an example network (R2 = 0.97):

The network performance provided in Table 1 indicates that its poorest response occur-

red when no cues were present. We found this overestimation in all 100 perceptrons. On

average, for the no cue condition (actual probability = 0.00) network responses were 0.15

(SD = 0.02).

Fig 1. The responses of a perceptron to each of the 16 types of input patterns over the course of 1000

epochs of training. Responses are recorded after 1, 5, 10, 15, 20, 25, 50, 75, and 100 epochs, and then are

recorded every 100 epochs until 1000 epochs of training have been conducted. The legend indicates which of

the four cues are present in each of the 16 different stimulus patterns; the order of items in the legend

matches the order of the lines as they are ‘stacked’ in the graph.

doi:10.1371/journal.pone.0172431.g001
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We explored this overestimation by creating ten new training sets. We used the method

described earlier, with one exception: for five of the new training sets, the probability of reward

when no cues were present was 0.05, while for the other five this probability was 0.10. We trained

20 new perceptrons on each of these new training sets. When the no cue reward probability was

0.05, network performance improved slightly over the results reported above (R2 = 0.962, SD =

0.009). When the no cue reward probability was 0.10, network performance improved slightly

more (R2 = 0.973, SD = 0.011). However, more accurate estimates of the no-cue probability pro-

duced this improvement; there were no significant improvements observed for any other proba-

bility estimates.

Our previous research [16] demonstrated that perceptrons rapidly learned to match proba-

bilities signaled by individual cues. To determine whether this was true with simultaneous

cues, we examined perceptron responses to the 16 different input patterns at intervals of 5

epochs for the first 25 epochs of training, then at intervals of 25 epochs until 100 epochs of

training had occurred, and then finally at intervals of 100 epochs until 1000 sweeps of training

had occurred. We present th results for a typical perceptron in Fig 1. Prior to training, the per-

ceptron generates activities of around 0.5 to each of the 16 patterns because of its small, ran-

domly initialized weights. However, when training begins the responses of the perceptron

quickly change to match the probabilities signaled by the various patterns. For instance, the

perceptron illustrated in Fig 1 achieves probability matching (i.e. performance like that pre-

sented in Table 1) after between 25 and 50 epochs of training, and then maintains this perfor-

mance for the remainder of training. There are slight variations in performance as training

continues that result from presenting perceptrons patterns in random order.

Network interpretation. These results show that when different cues provide independent

signals about reward probability, perceptrons can match probabilities with a high degree of

accuracy. This suggests that the structure of a perceptron–its bias and its connection weights–

implements the additive rule for independent probabilities. How does perceptron structure

accomplish this? To answer this question let us consider the relationship between a modern per-

ceptron and logistic regression [19].

Table 1. Relation between the actual probability associated with each type of input pattern in one training set and a typical network’s responses

to the patterns.

Conditional Probability Input Pattern Actual Probability Network Response

P(R|~A~B~X~Y) 0,0,0,0 0.00 0.12

P(R|~A~B~XY) 0,0,0,1 0.63 0.65

P(R|~A~BX~Y) 0,0,1,0 0.64 0.57

P(R|~A~BXY) 0,0,1,1 0.90 0.95

P(R|~AB~X~Y) 0,1,0,0 0.35 0.32

P(R|~AB~XY) 0,1,0,1 0.88 0.86

P(R|~ABX~Y) 0,1,1,0 0.81 0.81

P(R|~ABXY) 0,1,1,1 0.98 0.98

P(R|A~B~X~Y) 1,0,0,0 0.21 0.19

P(R|A~B~XY) 1,0,0,1 0.79 0.76

P(R|A~BX~Y) 1,0,1,0 0.70 0.69

P(R|A~BXY) 1,0,1,1 0.96 0.97

P(R|AB~X~Y) 1,1,0,0 0.47 0.44

P(R|AB~XY) 1,1,0,1 0.94 0.91

P(R|ABX~Y) 1,1,1,0 0.77 0.88

P(R|ABXY) 1,1,1,1 0.96 0.99

doi:10.1371/journal.pone.0172431.t001
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Logistic regression is used to determine the relationship between a dependent variable and

a set of independent variables when the dependent variable is dichotomous (typically coded as

0 or 1) [20]. It determines a set of coefficients (the βi terms in Eq 3 below) that best predicts the

probability that the dependent variable is equal to 1 given the states of the independent vari-

ables, which are also typically encoded as 0 or 1. Eq 3 provides an example of relating the prob-

ability of the state of the dependent variable (Y) to the states of four independent variables (xi):

P Y ¼ 1jx1x2x3x4ð Þ ¼
eðb0þb1x1þb2x2þb3x3þb4x4Þ

1þ eðb0þb1x1þb2x2þb3x3þb4x4Þ
ð3Þ

Logistic regression uses a logit transformation involving the probability of the dependent

variable [20]. This transformation takes the natural logarithm of the odds that the dependent

variable has the state 1 given the states of the predictors; this transformation equals a weighted

linear sum of the independent variables as is shown in Eq 4:

ln
PðY ¼ 1jx1x2x3x4Þ

1 � PðY ¼ 1jx1x2x3x4Þ

� �

¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 ð4Þ

The conditional probability provided in Eq 3 is in fact a logistic equation [4–6]. This becomes

obvious if we divide both the numerator and the denominator of Eq 3 by the numerator of the

same equation, which produces the logistic equation in Eq 5. Note that this equation is identical

to Eq 1 if we make the obvious assumption that β0 equals the bias θ, and that the sum of the

remaining βixi terms is the net input, where each βi is a weight and each xi is an input activity.

P Y ¼ 1jx1x2x3x4ð Þ ¼
1

1þ e� ðb0þb1x1þb2x2þb3x3þb4x4Þ
ð5Þ

Schumacher, Rossner and Vach [19] prove formal equivalence between a perceptron that

uses the logistic activation function and logistic regression, as Eq 3 through 5 show. They also

prove that, in principle, if we train such a perceptron using gradient descent, then its weights

should be identical to the coefficients of a logistic regression of the same data. However, Schuma-

cher et al note that, in practice, gradient descent training my not provide this result, particularly

if it uses a constant learning rate. Furthermore, Schumacher et al.’s proof defines the error gradi-

ent over the sum of a network’s responses to all of the patterns in the training set (so-called batch

training). Given that the Simulation 1 perceptrons use a fixed learning rate, and that they also

learn via stochastic training which updates weights after every single pattern presentation (so-

called stochastic training), whether these perceptrons match probabilities by converging on the

same solution as logistic regression is an open question.

To answer this question, we performed a logistic regression for each of the training sets,

using the glm function in R. Each logistic regression fit a model derived from the 2 X 2 X 2 X 2

contingency table for each training set. We then used R2 to assess the relationship between the

five coefficients of the logistic regression and the five characteristics of network structure (i.e.

the bias of the output unit and the connection weight associated with each cue). Each net-

work’s structure was highly related to the regression coefficients; the average R2 across all net-

works was 0.99 (SD = 0.001). In short, each perceptron matches training set probabilities by

adopting a structure that implements a logistic regression that maps cue signals into expected

reward probabilities.

This finding is also important because it provides an elegant interpretation of each connec-

tion weight in the perceptron. If each of these weights is equivalent to a coefficient in a logistic

regression (as demonstrated in the preceding paragraph), then each of these weights can be lit-

erally interpreted as the natural logarithm of the odds ratio associated with a cue. That is, the

Probability matching in perceptrons
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connection weight indicates how the odds of reward are altered by the presence or absence of

a particular cue when the other cues are held constant [20]. We discuss the implications of this

finding to the study of animal learning later in this paper.

Simulation 2: Conditional dependence and linear nonseparability

In comparison to other pattern classification techniques, researchers typically dismiss percep-

trons due to their inability to distinguish linearly nonseparable classes [4–6]. In Simulation 1,

we considered perceptrons in the context of a different purpose, probability matching. Simula-

tion 1 revealed that perceptrons are capable of performing this task even when facing linearly

nonseparable problems.

However, perceptrons match probabilities in Simulation 1 because each cue is an indepen-

dent signal of reward probability. If this independence is false, then perceptron performance

will deteriorate. In logistic regression one would deal with conditional dependence by adding

interaction terms to Eq 4 [20]. To do so with a perceptron requires adding additional input

units to represent interactions between cues. How do departures from independence affect

perceptron performance when we do not use additional units to encode interactions?

Simulation 2 explores this question by creating different training sets in which we hold con-

stant the logical structure of a conditionally dependent relationship between Cues X and Y

while we vary the amount of the interaction between them by manipulating the probability of

reward that their interaction signals.

Method

In Simulation 2, we create four different types of training sets using the same general method

described for Simulation 1. All four types of training sets consist of 1600 patterns; in each

training set Cues A and B are conditionally independent of all other cues, the presence of Cue

A indicates a reward probability of 0.2, the presence of Cue B indicates a reward probability of

0.4, and the presence of no cues indicates a reward probability of 0.0. We replicate each of the

16 types of input patterns 100 times. The difference between the four types of training sets

involves Cues X and Y.

In the first type of training set, Cues X and Y interact with one another because the reward

that they signal depends on the states of both cues. In particular, the logical AND of X and Y

signals a reward with a probability of 0.6. That is, only when both Cues X and Y are present do

they signal this likelihood of reward. We created five different training sets of this type using a

stochastic procedure analogous to that described in Simulation 1.

The second type of training set is identical to the first, with the exception that the AND of X

and Y signals a smaller reward probability of only 0.1. Again, we generated five different ver-

sions of this training set. The purpose of this second type of training set is that it is logically

identical to the first type (i.e. both have the same linearly separable relationship between Cues

X and Y). However, by changing the likelihood of reward associated with this relationship, we

vary the amount of interaction between the two cues (in probabilistic terms, we vary the

amount of conditional dependence between the two cues).

In particular, consider one of these training sets. To operationalize the amount of condi-

tional dependence, we first create two 2 X 2 contingency tables: one providing the frequency

of occurrence of each combination of Cue X and Y when there is a reward, the other providing

the frequencies of occurrence when there is no reward. Note that these two tables collapse

across all instances of the independent Cues A and B. Second, we compute χ2 for both of these

tables to measure the independence of Cues X and Y. Finally, we sum the two values of χ2 to

operationalize overall ‘degree of conditional dependence’. As this sum increases, there is a

Probability matching in perceptrons
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higher amount of dependence between cues X and Y. For the five high reward probability

training sets, the average of this sum was 75.08 (SD = 9.49). In contrast, the average sum for

the five low reward probability training sets was 3.47 (SD = 2.04). This indicates that there is a

much higher amount of conditional dependence between X and Y when their AND signals a

reward probability of 0.6 than when their AND signals a reward probability of 0.1, even though

type of relationship between X and Y is identical.

We also create two other types of training sets using a linearly nonseparable relationship

between Cues X and Y. In the first, the XOR of cues X and Y signals a reward probability of

0.6. That is, these cues only signal this likelihood of reward when Cue X is present while Cue Y

is absent, or vice versa. In the second, the logical XOR of Cues X and Y signals a lower reward

probability of 0.1. Again, we generated five different versions of each of these two types of

training sets.

Again, these two XOR-based training sets hold the relationship between Cues X and Y con-

stant while varying the amount of conditional dependence between the cues. When the XOR

of these two cues signals a reward likelihood of 0.6, the average sum of the χ2 values of the two

2X2 contingency tables involving X and Y was 273.09 (SD = 19.26), indicating a high amount

of conditional dependence. In contrast, when the XOR of these two cues signals a reward like-

lihood of 0.1, the average sum of the χ2 values was 9.73 (SD = 4.60), indicating a lower amount

of conditional dependence.

We trained 20 perceptrons on each of the five versions of the four different types of training

sets described above, creating 400 different networks in total. We used the identical training

procedure described in Simulation 1. At the end of training, we recorded perceptron responses

to each of the 16 possible types of input patterns; we also recorded network structure.

Results

As was the case for Simulation 1, we assessed the probability matching of perceptrons by com-

puting the R2 between the actual reward probability associated with each input pattern in the

training set and each network’s responses to these patterns. Table 2 provides the mean R2 for

the 100 different perceptrons trained on each of the four types of training sets. For each of the

four conditions summarized in Table 2 perceptron performance was poorer than that observed

in Simulation 1. However, this was not because perceptrons failed to emulate logistic regres-

sions for this data. In every case, perceptron structure was nearly identical to the correspond-

ing logistic regression coefficients. The problem was that with only four input units the

perceptrons could not capture the conditional dependence between Cues X and Y.

An inspection of Table 2 reveals several interesting findings. First, on average networks per-

form better when there is an AND relationship between Cues X and Y than when there is an

XOR relationship between these cues. Second, on average networks perform better when Cues

X and Y combine to signal a lower probability of reward then when they combine to signal a

higher probability of reward. Third, changing the probability of reward has a much larger effect

on network performance for the XOR versions of the training sets than for AND versions of the

training sets. An analysis of variance (ANOVA) of the data used to produce Table 2 confirms

Table 2. The mean R2 (with standard deviations) between network responses and actual probabilities

for 16 different input patterns in each of the four types of training sets.

Reward Probability Equals 0.6 Reward Probability Equal 0.1

AND of Cue X and Cue Y 0.76 (0.03) 0.88 (0.03)

XOR of Cue X and Cue Y 0.28 (0.05) 0.87 (0.03)

doi:10.1371/journal.pone.0172431.t002
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these general observations. There is a statistically significant main effect of the logical nature of

a training set (XOR vs AND, F = 4219, df = 1,396, p< 0.001), a significant main effect of the

degree of reward being signaled (high vs low, F = 8796, df = 1,396, p< 0.001), and a significant

interaction between these two factors (F = 3754, df = 1,396, p< 0.001).

One problem with this ANOVA is that the logical structure of the relationship between

Cues X and Y is confounded with conditional dependence. This is because when conditional

dependence is operationalized using the sum of the χ2 metric, on average this metric is higher

for the training sets based on XOR than it is for the training sets based on AND.

We can carry out two alternative analyses in light of this problem. First, we can simply pre-

dict the R2 fit between network responses and actual training set probabilities from the sum of

the χ2 metric for each training set presented to each of the 400 perceptrons. This predicts net-

work performance using degree of conditional dependence, and ignores the logical relationship

between Cues X and Y. When we perform this analysis, we find that the degree of conditional

dependence accounts for nearly all of the variance in the fit of network responses (R2 = 0.983,

F = 22990, df = 1, 398, p< 0.0001).
We can contrast this result with a second analysis that predicts network performance using

the dichotomous nature of the relationship between Cues X and Y (i.e. XOR vs AND). This

result is significant as well, but only accounts for a quarter of the variance in network perfor-

mance accounted for by our measure of conditional dependence (R2 = 0.2458, F = 129.7,

df = 1, 398, p< 0.0001).
In short, the amount of conditional dependence provides a much better prediction of net-

work performance than is provided by linear separability, though both are statistically signifi-

cant predictors.

General discussion

The purpose of the current study was to extend our previous research on probability matching

in perceptrons. In the first simulation, we examined probability matching by signaling reward

likelihood using four conditionally independent cues, any of which could be simultaneously

present. All of the training sets in Simulation 1 were linearly nonseparable. However, by focus-

ing on the predicted probabilities produced by perceptrons, rather than on separating rewarded

patterns from those not rewarded, we discovered that perceptrons generated highly accurate

responses. Perceptrons can match probabilities by processing multiple independent signals.

How do perceptrons accomplish such probability matching? We examined the bias and

weights of networks after training, and compared them to the coefficients of logistic regression

equations fitted to the same data. We found that the structure of the networks very nicely

approximated the logistic regression coefficients. This relationship is expected in principle, but

may not necessarily be achieved in practice [19]. Our results show that a variation of a gradient

descent algorithm in which patterns are presented randomly, and in which network structure

is updated after each pattern presentation [3, 18], is equivalent to performing logistic regres-

sion. Thus, our perceptrons learn to match probabilities by adopting weights that reflect the

natural logarithm of the odds ratio associated with each cue, where each cue is an independent

source of information about the probability of reward. The odds ratio associated with a cue in

essence indicates the difference between the probability of reward when the cue is present and

the probability of reward when the cue is absent. The net input to the output unit provides the

sum of these ratios for all cues that are present, and the logistic activation function literally

transforms this sum into the expected probability of reward.

The preceding paragraph provides a computational account of how perceptrons match

probabilities. In cognitive science, other accounts, capturing different kinds of generalizations,
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are also required [21, 22]. In particular, implementational accounts of how probability match-

ing occurs in the brain are required. Current research suggests that synapses in the brain are

themselves highly stochastic, and pre- and post-synaptic mechanisms that modify synaptic

efficacy via learning (e.g. long-term potentiation and short-term depression) can quickly mod-

ify a synapse’s stochastic behavior [23, 24]. This raises the possibility that such mechanisms of

synaptic plasticity are well suited as implementational accounts of probability matching, par-

ticularly given our observation that probability matching is established quickly (Fig 1). Future

research should explore the relationships between computational accounts such as the one

developed in the current paper and implementational accounts like that developed by [23, 24].

Our computational account of probability matching in perceptrons also predicts when net-

works will be poorer probability matches. In particular, if reward probability is signaled by

interactions between cues, then the cues that interact are not independent of one another. In

this case, perceptron performance will deteriorate, because the perceptrons are ‘wired’ to

assume cue independence. Our second simulation explored this issue by manipulating the

conditional dependence between Cues X and Y. In this simulation, these two cues were condi-

tionally dependent (i.e., they interacted) because their logical combination signaled reward

probability. In half of the training sets, we used logical combination AND (which is linearly

separable), while in the other half we used the linearly nonseparable XOR. We also varied the

amount of conditional dependence between the two logically related cues. We accomplished

this by having the interacting cues signal either a high probability of reward (0.6) or a low

probability of reward (0.1). There is a lower amount of conditional dependence when there is

a low probability of reward.

The results of Simulation 2 revealed, as expected, that the presence of conditional depen-

dence between cues decreased perceptrons’ ability to match probabilities. However, this ability

was still surprisingly good. For instance, while conditional dependence was present in all of

the training sets used in this study, perceptrons were able to fit 75% or better of the actual vari-

ance in the training data in three of the four conditions (see Table 2). Furthermore, while lin-

ear separability (i.e. the logical relationship between Cues X and Y) was a significant predictor

of perceptron performance, we discovered that degree of conditional dependence is a much

stronger predictor.

These results have interesting implications for the general notion of perceptrons as pattern

processors. Perceptrons lack hidden units which places well-known limitations on their ability

to classify patterns [7]. Modern treatments continue to dismiss perceptrons as pattern classifi-

ers because they are limited to distinguishing linearly separable classes [4–6]. However, per-

ceptrons are capable of computing functions other than the digital classification of patterns.

When faced with the analog function of judging likelihood of reward (or of class membership)

they generate excellent performance even when classes are not linearly separable, as demon-

strated in Simulation 1. This performance exploits conditional independence rather than lin-

ear separability. Simulation 2 revealed that when conditional independence was not true,

perceptron performance could still be reasonably high, depending upon the amount of condi-

tional dependence. Indeed, amount of conditional dependence was a much better predictor of

performance than was linear separability.

In short, we agree that perceptrons have limits due to their structure. However, the nature

of these limits depends upon the tasks they face. When trained to match probabilities, linear

separability does not seem to be the appropriate metric to use to predict perceptron behavior.

Other metrics, that measure the amount of conditional dependence, are more appropriate.

The current results also have very interesting implications for domains that can be

informed by models based on perceptrons, such as animal learning [12]. One facet of this

domain, contingency theory, relates strongly to probability matching.
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Contingency theory attempts to explain how biological agents learn to estimate the causal

contingency, or the probabilistic relationship, between cues and outcomes [25–36]. A typical

contingency theory experiment is analogous to the tasks facing perceptrons in our two simula-

tions: cues are paired (probabilistically) with outcomes, and subjects judge the strength of this

relationship. Contingency theorists debate the kind of metric to use to measure or to define

the strength of contingency [25, 26]. Of several possible measures one, called ΔP (which is a

difference between conditional probabilities), arguably provides the best account of data.

However, ΔP is problematic: for instance, it typically only applies to 2 X 2 contingency tables;

we cannot compute it for a more complex design like the one used in Simulations 1 and 2.

Importantly, contingency theorists do not consider one alternative metric: the odds ratio

[37, 38]. In general, an odds ratio is a ratio of odds, while odds themselves are ratios of proba-

bilities. For example, they express the odds of reward when a particular cue is present relative

to the odds of reward when that cue is absent.

Odds ratios are important in the context of this paper because logistic regression coeffi-

cients can literally be interpreted as being odds ratios [20]. As the structure of the perceptrons

in our simulations emulates logistic regression coefficients, this means that we can also inter-

pret perceptron weights and biases as odds ratios. Given that perceptrons have direct formal

and empirical links to the animal learning literature [12], then this clearly indicates that con-

tingency theorists should explore the potential of measuring contingency with odds ratios.
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