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A recent associative model (Miller, N.Y., & Shettleworth, S.J., 2007. Learning about environmental
geometry: An associative model. Journal of Experimental Psychology: Animal Behavior Processes B, 33,
191–212) is an influential mathematical account of how agents behave when reorienting to previously
learned locations in spatial arenas. However, it is mathematically and empirically flawed. The current
article explores these flaws, including its inability to properly predict geometric superconditioning. We
trace the flaws to the model’s mathematical structure and how it handles inhibition. We then propose an
operant artificial neural network model that solves these problems with inhibition and can correctly
model both reorientation and superconditioning.
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Perhaps the most influential formal account of associative learn-
ing is the classic Rescorla–Wagner model (Rescorla & Wagner,
1972):

�V�� · � · (� � � V) (1)

In the Rescorla–Wagner model, the change in associative
strength �V between conditioned stimulus (conditional stimulus,
CS) and unconditioned stimulus (US) is defined by the difference
between the magnitude of the US, represented by �, and magnitude
of the current associative strength, represented by V. This differ-
ence is scaled by the CS’ inherent salience � and by the learning
rate related to the US, �. This model is inherently one of classical
conditioning. At every iteration, the equation updates associative
strengths for all presented cues simultaneously; the agent’s choice
to respond (or not) is not part of this formulation of learning
(Dawson, 2008).

Recently, there have been attempts to extend the Rescorla–
Wagner model to handle other types of conditioning. For example,
Miller and Shettleworth (2007) convincingly argue that a case in
which the agent only chooses one option at a time from a selection
of possibilities, and only receives reinforcement or feedback about
the chosen option, would be more properly considered an operant
task, with reinforcement contingencies based upon the agent’s

particular pattern of choices. Geometric reorientation (Cheng,
1986) is presented as an example of this type of task, in which
disoriented agents choose to search particular locations of a con-
trolled arena for reinforcement. (This task is described in greater
detail below.) Under an associative viewpoint, locations of inter-
ested within these arenas are viewed as collections of cues, and
each cue competes for associative strength. In attempting to model
geometric reorientation using a more “operant” view of associa-
tion, Miller and Shettleworth modify Equation 1 to include a
measure of the agent’s probability of choosing a given location:

�VE��E · �L · (�L � VL) · PL (2)

Here, the change in associative strength of each cue (or “ele-
ment,” E) is updated using the sum of the associative strengths of
all cues at a given location (i.e., VL � (�VE)L), and scaled by a
term representing the probability of choosing that location. In its
original version (Miller & Shettleworth, 2007), this model defined
the probability of choosing a given location PL as the relative
associative strength of the location in question compared with the
total associative strength at every possible location:

PL �
VL

� VL
(3)

However, Dawson, Kelly, Spetch, and Dupuis (2008) identified
a serious problem when probability is defined using Equation 3.
They demonstrated that, using an example reorientation problem
taken from Miller and Shettleworth (2007), a model that used
Equations 2 and 3 can produce values of PL that fall outside the
range of 0 to 1, and thus, cannot be considered “probabilities.” In
response to the flaw identified by Dawson et al. (2008); Miller and
Shettleworth (2008) revised their model of reorientation. Miller
and Shettleworth replaced Equation 3 with a new term for the
relative net attractiveness of a location. In the modified model,
Miller and Shettleworth defined “net attractiveness of a location”
rL as the sum of the associative strengths of the cues at that
location if that sum is positive, or as 0 if that sum is not positive
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(that is, rL � VL
�H0(VL), in which H0 is the Heaviside step

function with threshold 0). PL became the relative net attractive-
ness of each location compared with the total relative net attrac-
tiveness at every location:

PL �
rL

� rL
(4)

They reasoned that by replacing Equation 3 with Equation 4, PL

will always fall within the acceptable range for probability, and
they presumed that the theoretical issues with their model had been
resolved.

Below, we show that even after this modification, the model is
still inadequate for modeling learning in the reorientation task or
related associative tasks. The purpose of the current article is to
demonstrate particular inadequacies empirically, and to explain
their source in the model’s equations. This analysis of their revised
model will also reveal why the errant behavior identified by
Dawson, et al. (2008) emerged in the original version of Miller and
Shettleworth’s model. We analyze and explain the model’s behav-
ior—and errors—in two separate spatial-learning tasks: spatial
reorientation and geometric superconditioning. Finally, we pro-
pose an alternative model to rectify the situation.

Although Miller and Shettleworth (2007) also present a
“multiple-choice” version of their model in which agents are
allowed to search multiple locations before receiving feedback, the
mathematics of this are an extension of the single-choice model,
and therefore any mathematical flaw in the single-choice model is
inherited in the multiple-choice model as well. For this reason, we
focus on the single-choice version below. By convention, we will
refer to models with the form of Equation 2 as the “M–S model”
regardless of the equation used to compute PL. The model’s
original presentation (Miller & Shettleworth, 2007), consisting of
Equations 2 and 3, is referred to as “M–S 2007,” and the revised
form (Miller & Shettleworth, 2008) using Equations 2 and 4 is
denoted as “M–S 2008.” The correction employed by replacing
Equation 3 with Equation 4 is referred to as the “positiveness
correction,” because unlike VL, rL is defined in such a way that it
is always positive, and never negative (as negative sums are
artificially set to 0).

Reorientation

The Task

The Miller–Shettleworth associative model was designed
around a particular case study in association: reorientation, defined
here as an agent’s ability to locate a previously learned position
when disoriented. At its simplest, reorientation requires an agent to
navigate to a previously learned location based upon available
environmental cues, such as information about the shape of the
environment (“geometric” cues) and about landmarks present in
the environment (“feature” cues). Such behavior is typically stud-
ied experimentally with what has become known as the “reorien-
tation task” (Cheng, 1986), which has shown that agents, even
those from dramatically different species that range from ants to
humans, exhibit certain empirical regularities (reviewed in Cheng
& Newcombe, 2005).

In a typical reorientation task (Cheng, 1986), an agent freely
explores a rectangular arena, with each corner distinguished from

the others through some combination of geometric and featural
cues. If the agent approaches the corner the experimenter has
deemed “correct”—for instance, the corner containing a unique
feature like a colored panel, with a long wall on its left—then the
agent is reinforced, otherwise no reward is offered. After repeated
trials to learn that this location is correct, the agent is disoriented
and placed in a new arena in which the feature cues are placed in
conflict with the geometric cues—continuing the earlier example,
the panel is now in a corner with a long wall on its right. It might
be plausible to predict that, in this new arena, agents will move
toward the feature, which was the only unique predictor of reward
during training. Curiously, although agents will approach the cor-
ner with the unique local feature, agents will also frequently
choose locations matching the original geometry—the original
corner and its geometric equivalent—even though this geometry
was not always reinforced during training, and neither corner
currently possesses the reinforced local feature. The exact propor-
tion of responses that follow the feature as opposed to the geom-
etry varies somewhat depending on the size of the arena and the
agent in question (e.g., see Cheng & Newcombe, 2005; Chiandetti
& Vallortigara, 2008), but the general pattern remains consistent.
A typical reorientation arena is depicted in Figure 1.

Figure 1 illustrates a training arena employed in a typical
reorientation task (Wall, Botly, Black, & Shettleworth, 2004, Ex-
periment 3). This experiment is of interest because it is the case
study in which Miller and Shettleworth’s (2007) associative model
was developed and tested. Within this task, rats are required to
locate food in one corner of a geometric arena—here, the Correct
corner, with a particular set of geometric properties G and a unique
feature F (along with a general context cue which Miller and
Shettleworth labeled B, representing the bowls at each location that
the rats searched for food). During this phase of exploration and
learning, the rats are also exposed to a different set of geometric
properties learned to be wrong, W, which never contain reinforce-
ment. In later phases of this experiment, the configuration of cues
changes (for instance, F might move from the Correct location to

Figure 1. Schematic overview of the Wall et al. (2004) reorientation task
training phase, traditionally used in discussions of the M–S model, with
locations and cue types labeled. B � “Bowl” (a general context cue), G �
“Correct Geometry”, F � “Feature”, W � “Wrong Geometry.” A� indi-
cates the location is reinforced, and a� indicates no reinforcement.
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the Near location) and the rats’ behavior is monitored, but for the
purposes of the current article, we concentrate on this training
phase.

Demonstration of Problems

The M–S 2008 model was created to solve problems that
emerged when the M–S 2007 model simulated the training phase
of this paradigm (Dawson, Kelly, Spetch, & Dupuis, 2008). In
particular, the positiveness correction in M–S 2008 was intended
to prevent the impossible probabilities M–S 2007 generated with
high �� or over extended runs. Miller and Shettleworth (2008)
found that when their revised model was used for the Wall, Botly,
Black, and Shettleworth (2004) paradigm, it behaved correctly,
even when high values (0.65) for �� were used. However, we
show below that when some of the parameters of the revised model
are slightly changed, errors are still produced. In short, the posi-
tiveness correction has not created a proper mathematical model of
reorientation.

For example, when used to model the Wall et al. (2004) reori-
entation task at slightly higher learning-rate values than �� �
0.65, the M–S 2008 model predicts dramatic fluctuations in asso-
ciative strength and choice probabilities when both should instead
plateau, suggesting a lack of robustness in the underlying mathe-

matics. (An analysis of the mathematical properties and problems
of the M–S model is provided in a later Appendix.) The fluctua-
tions in associative strength escalate until they eventually culmi-
nate in a global divide-by-zero error. This is repeatable and can be
predicted reliably; for instance, for this task at �� � 0.7, the
fluctuations begin between iterations 10 and 20 (depending on
the cue or location) and the collapse occurs at iteration 183 (see
Figure 2). Similar fluctuations, in addition to the singularities
reported by Dawson et al. (2008), can be demonstrated in the M–S
2007 formulation as well.

Why Does It Fail?

When modeling the Wall et al. (2004) reorientation task, the
Miller and Shettleworth (2008) model produces two distinct errors,
both illustrated in Figure 2. The first is a series of fluctuations of
both associative strengths and choice probabilities at high learning
rate ��; similar behavior is observed in the Miller and Shettle-
worth (2007) model as well, suggesting that this problem’s root
cause is shared by both models. The second problem, in which the
equations consistently produce a divide-by-zero error after several
fluctuations, is unique to the M–S 2008 model, suggesting it is a
consequence of the positiveness correction. We describe the source
of these problems using terminology consistent with Miller and

Figure 2. The two Miller–Shettleworth models (2007, 2008) simulating the Wall et al. (2004) reorientation task
at a high ��. Note the fluctuation in both models. For the M–S 2008 model (left), the 0s in the lower panel are
actual 0 values, and the upper panel uses 0 as a replacement for divide-by-zero, occurring after the crash at
iteration 183. The singularities present in the M–S 2007 model (right) were reported by Dawson et al. (2008),
and the fluctuations are novel.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

275DIFFERENTIATING MODELS OF ASSOCIATIVE LEARNING



Shettleworth’s (2007) discussion of reorientation, in which the task
consists of four locations (Correct, Rotational, Near, and Far) that
are defined in the model as combinations of four cues [a general
context cue (B), Feature (F), correct Geometry (G), and Wrong
geometry (W)]. G is present at the Correct and Rotational loca-
tions, and the Near and Far locations have the W cue. The B cue is
present at all four locations, and the F cue is present only at the
Correct location (see Figure 1). During simulation, all cues are
initialized to 0 associative strength, except for B, which is initial-
ized to 0.1 to reflect prior experience acquired during pretraining.

The fluctuations emerge from the structure of Equation 2, in
which the change in associative strength for a cue is scaled by a
function of associative strength (Equation 3 or Equation 4). Both
of these scaling functions can approach zero when considering
locations with strong inhibitory cues, causing the model to reduce
the effective change in associative strength due to lack of rein-
forcement relative to the effective change in associative strength
due to reinforcement. That is to say, the more inhibitory a loca-
tion’s cues become, the less learning takes place at that location
relative to others. Because these locations contain cues which are
at least partially reinforced on other locations (the B and G cues in
this example), these cues acquire a greater positive change in
associative weight from reinforced locations and a lesser negative
change in associative weight from nonreinforced locations. At low
learning rates ��, this artificial inflation is small relative to the net
weight, and easily handled by the error-correcting Equation 2.
However, at sufficiently1 high ��, the artificial inflation is large
enough to lead to an “overcorrection”—the magnitude of the
change in weights being larger than it should be.

For example, consider the G cue—which is initialized at 0, is
presented at two locations, and is only reinforced at one. There-
fore, as reported by Miller and Shettleworth, we expect its asso-
ciative strength to climb (as it is reinforced), peak (because this
reinforcement is not universal), and stabilize at some small posi-
tive value. With �� � 0.7, the peak occurs after the third iteration
at VG � 0.22; the corresponding �VG � �0.01 is negative,
consistent with predictions—and this is expected to slowly de-
crease in magnitude with subsequent iterations. However, the
subsequent iteration is not a decrease—rather, it increases, with
�VG � �0.003. When evaluating the change in strength for the G
cue, the scaling nature of Equations 3 and 4 produces a lower PL

for the nonreinforced Rotational corner than for the reinforced
Correct corner—and as a result, the model assigns insufficient
inhibitory strength to the G cue. Following this slight positive
increase, the model “overcorrects” with a strong negative �VG to
reflect the Rotational corner—but because that corner contains the
B cue as well as the G cue, the negative overcorrection applies to
B as well. On subsequent iterations, these interlinked overcorrec-
tions produce the distinctive fluctuating behavior seen in Figure 2.

This fluctuation emerges from the structure of Equation 2, but
the eventual “crash” seen in Figure 2 results from a divide-by-zero
error in Equation 4. This occurs because Equation 4 still computes
the “effective” VL for every location in the model, and then
multiplies that VL by the Heaviside step function of VL with
threshold 0. This results in VL if VL 	 0, and 0 otherwise—as
locations’ net associative strengths fall below zero, they are
“dropped out” of the denominator of Equation 4. However, due to
the fluctuations seen above, which grow in magnitude over time, a
time will come in which the magnitude of the negative associative

strength of B and G together exceeds the magnitude of F, the only
uniquely positive cue in the system. At this point, all four locations
have negative net associative strength, and thus, Equation 4 at-
tempts to divide by zero.

If Equation 4 is replaced with Equation 3 (resulting in the M–S
2007 model), a “crash” does not occur. Instead, the model pro-
duces singularities (identified by Dawson et al., 2008, illustrated in
Figure 2). Without the positiveness correction, any location’s net
associative strength VL is allowed to fall below zero—or, as noted
above, for all locations’ net associative strengths to fall below
zero. At this point, the denominator in Equation 3 flips sign from
positive to negative, and a singularity appears in the corresponding
associative strengths and choice probabilities. As Equation 3 does
not include an artificial substitution of 0, the divide-by-zero out-
come does not happen, and if the model is allowed to continue to
run, eventually the denominator of Equation 3 will become posi-
tive again, resulting in the next singularity in Figure 2, and so on.

Because these fluctuations and (in the M–S 2008 model) crashes
arise after a different number of iterations depending on the chosen
learning rate parameters ��, and do not seem to appear during any
reasonable span of time within specific ranges for ��, it appears
that a necessary step in applying the Miller–Shettleworth (2007,
2008) model is missing. Specifically, one must carry out a search
of parameter space to find the boundaries in which the model will
fail; such a search would need to be carried out for each permu-
tation and combination of cues and locations present within the
task. However, it is informative that points of failure exist at all:
Such failures suggest an underlying problem with the mathematics
of the model. At the end of this article we provide a Technical
Appendix that reveals exactly what this underlying problem is.

The empirical failures demonstrated here appear when using the
Miller–Shettleworth models to simulate reorientation—the task for
which the models were developed. Other tasks can be viewed in an
associative light as well, and therefore may see the Miller–
Shettleworth model applied to them. Do these tasks also demon-
strate empirical failures? We turn now to examine the Miller–
Shettleworth models’ performance on a different spatial task: that
of geometric superconditioning.

Superconditioning

The Task

An interesting prediction of the Rescorla–Wagner model is that
“superconditioning” can occur. Superconditioning exists when ex-
citatory cues produce stronger responses after discrimination train-
ing if they are paired with an inhibitory cue, compared with a
control condition in which the excitatory cues are paired with a
neutral cue during training. The presence of an inhibitory cue
during discrimination training increases the difference between �
and �V, allowing for a greater change in associative strength.

Horne and Pearce (2010, Experiment 2) investigated if one
could observe superconditioning in the context of geometric and

1 What qualifies as “sufficient” varies dramatically with the structure of
the problem—cue distributions, number of locations, and initial associative
strengths. For the Wall et al. (2004) task as described here, “sufficient” is
near �� � 0.68.
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feature cues in a paradigm that can be viewed as an extension of
the reorientation task. In this experiment (summarized in Figure 3),
rats were trained to associate a particular set of geometric cues
with reinforcement, but only when a particular feature was absent.
That is, in Stage 2 of Figure 3, rats are reinforced when a particular
set of cues are present at a location (A�), but are not reinforced
when those cues are accompanied by an additional cue (AX�).
Following this training, the experimental group of rats received
reinforcement in the same location with both sets of cues present
(AX�), and a control group received reinforcement in that loca-
tion when the original cues are paired with a novel, neutral cue set
(AY�).

Because of their attempt to model animal data using the M–S
2008 model, Horne and Pearce defined the task as consisting of a
“correct geometry” cue G, an “incorrect (wrong) geometry” cue W,
a context cue common to every location B, and two feature cues
(one inhibitory feature present during discrimination training and
with the experimental group, F, and one neutral feature only
present for the control group, N)2. A summary of these cues as
presented in Horne and Pearce’s experiment is found in Figure 3.

Demonstration of Problems

Horne and Pearce’s (2010) animal results show that the exper-
imental group chose the “correct” corner with greater frequency
than did the control group—that is, the rats showed evidence of
superconditioning. However, when simulating the same experi-
ment with the M–S 2008 model, Horne and Pearce obtained the
opposite result: The probability of choosing the correct corner in
the experimental group was 0.92, and the probability of choosing
the correct corner in the control group was 0.95. Although this
difference is small, it is in the wrong direction relative to animal
data, leading Horne and Pearce to conclude that the M–S model
failed to display superconditioning. They attributed this to an
artificial inflation in the value of the B cue, and attempted to solve
the problem by manipulating the salience of this cue—in essence,
performing a search of parameter space, as described above—but
“in all of the simulations that [they] conducted, however, this
manipulation does not permit superconditioning to be predicted”
(p. 393. Such an outcome is a natural risk of systems that require
parametric searching: It is possible that no viable parameter com-
binations exist that will solve the problem. Horne and Pearce
appear to have reached this conclusion regarding the M–S models
and superconditioning.

Why Does It Fail?

This artificial inflation of B is a symptom, but not the true cause,
of the M–S model’s difficulty with superconditioning. Instead, the
failure to capture Horne and Pearce’s (2010) superconditioning
results stems from the structure of the M–S 2008 probability
equation, which includes the “positiveness correction.” This term
is employed to prevent the probability of choosing a location PL

from falling below zero even when that location’s net associative
strength is below zero (Dawson et al., 2008). Horne and Pearce
(2010) encounter such a location during Stage 2 (discrimination)
of their simulation: The magnitude of the negative associative
strength of the consistently inhibitory feature cue F far exceeds the
magnitude of the positive associative strength of the other cues
presented alongside it (B and G.).

During Horne and Pearce’s (2010) Stage 2 (discrimination), the
feature cue F is only present at a location which is consistently
inhibited, causing F’s associative strength to fall. Additionally,
whenever F is inhibited, the other cues presented with it—the
context cue B and the correct geometry cue G—are also inhibited,
gaining a more negative associative strength. When the total as-
sociative strength at these locations—VL, or the sum of the asso-
ciative strengths of F, B, and G—falls below zero, the Miller–
Shettleworth probability equation (Equation 4) applies the
positiveness correction to set the corresponding PL to zero, and the
model should subsequently predict no further changes in associa-
tive strength in response to this location. A similar story can be
told for the incorrect geometry cue W, which is never reinforced;
once the sum of associative strengths at these locations (B � W)
falls below zero, the positiveness correction prevents these cues
from gaining further inhibitory strength.

However, the B and G cues are still present and reinforced at
other locations on the acquisition trials during this stage, allowing
those cues to continue to gain associative strength at a slow rate.
These cues continue to gain positive associative strength from their
reinforced presentations while the Miller–Shettleworth equation
artificially prevents the cues from gaining negative associative
strength during their inhibited presentations as soon as the net
associative strength falls below zero. Concurrently, the associative
strength of these cues (B and G) grows higher than it should.
Similarly, during the acquisition trials, the B and G cues continue
to gain positive associative strength from presentations at the
reinforced locations, and the B, W, and G cues are all prevented
from gaining adequate negative associative strength from nonre-
inforced locations due to the positiveness correction artificially
setting such updates to 0.

During the Stage 3 (experimental or control group), this effect is
inflated in the experimental group relative to the control group, as
the experimental group pairs the already-inflated B and G cues
with a now-consistently reinforced F cue (leading to higher effec-
tive PL, and therefore a higher change in associative strength, on
the correct locations). In contrast, although the control group pairs
these cues with a never-reinforced novel N cue (with 0 initial
associative strength), this does not inflate the change on the correct
locations relative to the incorrect ones. Accordingly, the magni-
tude of the changes in associative strength will be greater for
experimental groups than for control groups, even on locations that
are identical between the two conditions. In effect, the model can
acquire more inhibition from a nonreinforced corner during super-
conditioning than it could from the same nonreinforced corner
during control.

This weakness in handling inhibition, combined with the overall
scaling of all changes in associative strength, results in the model
generating incorrect predictions as described by Horne and Pearce.
For instance, the probability of the model selecting a correct corner
during a test trial (without any feature cues) is given by the ratio

2 Horne and Pearce (2010) employ a different notation, instead using GC

and Gi to refer to correct and incorrect geometric cues, and F to refer to any
feature cue (despite two being used in the experiment). For consistent
terminology across the two experiments, and to avoid confusion about
whether a feature cue had prior associative strength (as it would have,
during superconditioning) or if it is a novel, neutral cue (as it would be,
during controls), we adopt the G, W, F, and N notation described here.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

277DIFFERENTIATING MODELS OF ASSOCIATIVE LEARNING



between the net associative strength at that corner and the total net
associative strength, or (B � G)/[(B � G) � (B � W)]. All of these
cues are artificially (and identically) inflated for both groups due to
the errors during the second stage (discrimination), but during the
third stage (experimental or control groups), the W cue has asso-
ciative strength of �0.35 in the experimental group, a 65% in-
crease relative to �0.21 in the control group. Accordingly, the
probability of choosing a correct corner is higher in the control
group (0.94) than the experimental group (0.91).

It is perhaps unsurprising that the source of these errors is not
obvious at first glance. At a fundamental level, they emerge
because the model represents locations as collections of cues, in
which some of those cues are present at locations that are rein-
forced differently. This shared-cue perspective is not taken during
Horne and Pearce’s (2010) discussion on superconditioning. In-
stead, they employ the common “A�/AX�” notation to discuss
superconditioning—but in a cue competition perspective, “A”
might represent some collection of cues that are not reinforced
with equal likelihood. Indeed, here, “A” refers to B � G, which are
present and reinforced in different proportions; similarly, the W
cue (a vital part of the behavior described above) is simply not
included in “A�/AX�” notation. As a consequence, Horne and
Pearce focus on the feature cue F becoming a conditioned inhibitor
dependent upon the context cue B becoming a conditioned excitor,
but do not discuss that B is, in truth, both reinforced and not
reinforced depending on the collection of cues present at a loca-
tion.

Discussion

From this examination, it is now clear that the Miller and
Shettleworth (2007, 2008) models are empirically flawed, and that
these flaws stem from their mathematical formulation. Because
similar errors occur with both the M–S 2007 and M–S 2008 model,
it is unlikely that any flaws can be solely due to how the model
defines probability (the source of the problems identified by Daw-
son et al., 2008). Instead, the errors discussed above emerge due to
the structure of Equation 2 itself; merely altering the PL equation
but retaining Equation 2 will not solve this problem. (This asser-
tion is discussed with greater rigor in the Technical Appendix.)

These results suggest that the Miller–Shettleworth (2007, 2008)
model be abandoned for future research.

However, in spite of these empirical flaws, Miller and Shettle-
worth (2007) make an important observation concerning the ap-
plication of associative models to geometry learning tasks: The
agent’s pattern of behavior alters each cue’s apparent reinforce-
ment contingencies on any given trial. In short, Miller and Shettle-
worth note that such learning is intrinsically operant. Miller and
Shettleworth endeavored to model this by using the PL equation to
scale the Rescorla–Wagner model as formalized in Equation 2.
Erroneously, this scaling resulted in the improper handling of net
negative associative weights, producing the problems that have
been described above. Importantly, the choice of PL equation—
Equation 3 or Equation 4—merely alters the form these issues
take: It is within the structure of Equation 2 that the true problem
lies.

The question now becomes if this is a problem with associa-
tionism in general—if an associative model can be created which
makes use of Miller and Shettleworth’s (2007) operant observa-
tion, but is not subject to the empirical errors present in their
model. In the next section, we describe an alternative model that
has just these properties: it solves the empirical problems with
Miller and Shettleworth’s model, and is still both associative and
operant in nature.

A Solution to the Problems

Logistic Behavior

To begin, let us consider Miller and Shettleworth’s (2007) view
of operant learning as follows: At some moment in time, an agent
perceives a set of cues VL related to a particular location L. The
agent uses these cues to make a judgment about how attractive this
location is. For instance, the agent might use these cues to predict
the probability PL of being reinforced if that location is actually
visited. Indeed, we could also say that PL is the likelihood that the
agent will actually visit location L. If the location is visited, then
the agent will be reinforced (or not), and can modify the associa-
tive strengths of the available cues accordingly. Such learning is

Figure 3. A schematic overview of the Horne and Pearce (2010) superconditioning task, adapted from that
article, with stages and cue types labeled. B � “Base”, G � “Correct Geometry”, W � “Incorrect Geometry”,
F � “Feature Cue”, N � “Neutral Feature Cue”. A � indicates the location is reinforced, a� indicates no
reinforcement. During Stage 3, the upper panel depicts the experimental condition, and the lower depicts the
control.
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operant, because associative strengths will only be modified if the
agent explores the location.

We saw earlier that one source of the problems with the M–S
models is that either equation used to model PL (i.e., either Equa-
tion 3 or Equation 4) has problems when faced with inhibition.
Clearly, we need to select a different equation for PL, one that is
more robust to the negative associative strengths of inhibitory
cues. A natural choice for this equation is the logistic function
(given in Equation 5), which produces a response between 0 and 1
for all possible input values and monotonically increases as input
increases.

PL �
1

1�e����VE�L�
(5)

It is impossible for the logistic function to produce a value
outside of the range between 0 and 1 (solving a problem that
occurs with Equation 3), or to result in a divide-by-zero error
(solving a problem that occurs with Equation 4). The logistic
function is an ideal choice for computing probability like PL

(Dawson & Dupuis, 2012), and has a long history of being used to
model phenomena in a wide variety of disciplines (Cramer, 2003).

The Perceptron

We also noted earlier that another source of the problems with
the M–S models arose when their equations PL were placed in the
context of the remainder of Equation 23. Importantly, the logistic
equation permits us to take advantage of a different formalism that
eliminates this difficulty. Equation 5—which converts weighted
cues into a probability—defines a modern version of a very simple
artificial neural network, called a perceptron (Rosenblatt, 1958,
1962). The simplest version of a modern perceptron (Dawson,
2004, 2008) consists of a set of input units, each of which can be
used to represent whether a particular cue is present or absent.
Each of these input units can send a signal to a single output unit
through a weighted connection; the weight of the connection
represents the associative strength of a particular cue. The output
unit works by summing the weighted signals from the input units
to produce a single number, called net input, which is identical to
(�VE)L. The output unit then produces a response—its activa-
tion—by computing the logistic function of its net input exactly as
defined by Equation 5.

Although Equation 5 defines the activation of this perceptron, it
does not define the learning rule with which the connection
weights are adjusted. Such a rule can be found in (Dawson, 2008),
expressed here with the language of Miller and Shettleworth:

�VE � �E�L · (�L�USL� � PL) · �CSE� (6)

Here �, �, and � are used as they are in Equation 1 and 2, while
“USL” reflects presence (1) or absence (0) of reinforcement (the
unconditioned stimulus) at a location, “CSE” reflects the value of
the input unit corresponding to element E (also 1 or 0, for presence
or absence of the conditioned stimulus), and PL reflects the per-
ceptron’s logistic response to a given pattern of cues, given by
Equation 5 (a function of (�VE)L).

In employing Equations 5 and 6, we are in essence proposing
that the perceptron can provide a central component of an associ-
ationist model of spatial learning. There are several reasons that
this proposal is attractive.

First, the mathematics of this type of model are well-estab-
lished—there is a long history of mathematical results concerning
perceptron learning, beginning with the work of Rosenblatt (1958,
1962).

Second, the associative models of Miller and Shettleworth
(2007, 2008) are extensions of the well-established Rescorla–
Wagner model of associative learning (Rescorla & Wagner, 1972).
Importantly, the kind of learning that is carried out by a perceptron
can be formally translated into Rescorla–Wagner learning (Daw-
son, 2008; Gluck & Bower, 1988; Sutton & Barto, 1981).

Third, the motivation behind Equation 5 was to generate a value
that could be interpreted as a probability. It has been shown
empirically that perceptron responses can be interpreted as prob-
abilities, because these networks can learn to generate responses
that match the probabilities of events occurring in the world
(Dawson, Dupuis, Spetch, & Kelly, 2009). Furthermore, formal
analyses of perceptrons prove that the activity of an output unit can
literally be called a conditional probability (e.g., Dawson & Du-
puis, 2012).

Fourth, one of the reasons that the M–S models are of interest is
because they have been argued to be able to model reorientation
task regularities. Crucially, perceptrons have also been shown to
be capable of modeling a variety of reorientation task phenomena
(Dawson, Kelly, Spetch, & Dupuis, 2010). These include success-
ful modeling of basic reorientation (feature and geometric cue
processing, with appropriate errors) in rectangular and quadrilat-
eral arenas, reorientation with multiple unique landmark cues in
assorted transformations, and evidence for changing emphasis on
geometric cues as arena size is varied. The perceptron can handle
other associative regularities not specific to reorientation as well,
but these fall beyond the scope of the current article; the interested
reader is referred to Dawson (2008) for an overview.

An Operant Algorithm

Although the perceptron has been successfully used to model
many empirical regularities found in the reorientation task (Daw-
son et al., 2010), this was done using training procedures that are
not operant in nature. We now describe an algorithm which trains
a perceptron in an operant fashion, transporting Miller and Shettle-
worth’s (2007) core idea about reorientation into the domain of
artificial neural networks.

The typical, and nonoperant, manner for training a perceptron
(Dawson, 2004, 2008) proceeds as follows: First, a pattern (i.e., a
set of cues, such as those corresponding to one “location”) is
presented to the perceptron’s input units. Second, the perceptron
converts input unit signals into an output response (i.e., Equation
5). Third, the perceptron receives feedback about its response (e.g.,
it receives reinforcement, or not). Fourth, a learning rule (Equation
6) is used to modify connection weights (associative strengths) in
accordance with the feedback.

A simple change to the above learning algorithm makes it truly
operant (Dawson et al., 2009). The second step in the above
procedure is to compute PL using Equation 5. Once this is com-
puted, we can add a new step in which PL is used to make a

3 Simply substituting the logistic equation for PL in Equation 2 will not
solve the problem; for a more formal discussion of these problems and their
consequences, we refer the interested reader to the Technical Appendix.
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choice—in essence, a choice about whether or not to visit location
L—in which the likelihood of visiting the location is PL. If the
choice is made to visit the location, then learning proceeds accord-
ing to the third and fourth steps in the above algorithm. However,
if the choice is made to not visit the location, then no learning
occurs —connection weights are not updated, and the algorithm
returns to the first step when presented with another pattern. This
perceptron is operant because it only learns when it chooses to act;
if it does not choose to act on a given trial, its connection weights
are not updated. Furthermore, it is operant in the way that Miller
and Shettleworth (2007) desire, because as the associative strength
of the cues at a location increase, PL (a function of those associa-
tive strengths) increases, and so does the likelihood that location L
will be visited. Conversely, as PL decreases, so does the likelihood
of visiting location L. As it learns about its environment, the
operant perceptron will be more likely to choose locations (i.e., cue
configurations) that lead to reinforcement, and will be less likely to
choose locations that do not lead to reinforcement. As was noted
earlier, and is detailed in the Technical Appendix, the root math-
ematical cause of the problems with the M–S model is the fact that
it scales changes in associative weights by PL. The procedure for
training an operant perceptron solves this problem by separating
operant choice from weight modification. That is, Equation 5 is
used to make a decision about whether to learn or not, and then
standard learning (Equation 6) is conducted accordingly. Impor-
tantly, at no point in Equation 6 are changes in association mul-
tiplied by Equation 5, preventing the mathematical difficulties
described in the Appendix.

With this training algorithm, it is not clear how to relate a sweep
of network training (one presentation of each location in a given
environment) to a trial in an animal learning experiment. That is,
it is unlikely that a network’s sweep is identical to a subject’s trial.
However, such a direct comparison between a network and a
biological agent is likely not useful, because one can modify the
amount of learning accomplished by a network by manipulating
the learning rate parameters, and such modifications are largely
arbitrary. A more fruitful comparison to make involves what
Pylyshyn (1984) has called relative complexity evidence. This
evidence is obtained by comparing networks trained in one con-
dition with networks trained in another, and then by relating this
comparison to a similar one made by biological agents. For in-
stance, if a network trained with three-feature objects learns the
reorientation task in fewer epochs than a network trained with
one-feature objects, and if a similar result was observed in an
animal learning experiment, then this comparison would be mean-
ingful, and would not depend on a strict quantitative mapping from
network parameters to the animal learning paradigm.

Employing this algorithm, the operant perceptron can choose to
investigate a location, or choose to not investigate a location;
learning only occurs when the perceptron chooses to investigate.
Furthermore, if one views the perceptron as a behaving agent, then
the only behavior a perceptron would produce is when it chooses
to investigate a location. As in geometry experiments with ani-
mals, when the agent (animal or perceptron) chooses to not un-
dertake a particular course of action, this absence of behavior is
naturally unobservable. If one removes the “unobservable” acts
from the operant perceptron’s history, there is no change to the
perceptron’s experience or behavior (as the perceptron did not

learn during these presentations), and what remains is a sequence
of choice behavior that is more recognizable to animal researchers.

Previous research has shown that the operant perceptron can
learn to perform a probability matching task (Dawson et al., 2009).
Furthermore, this previous research has shown that the behavior of
the operant perceptron at equilibrium is similar to that of a tradi-
tional perceptron trained on the same probability matching task.
This indicates that the operant training procedure does not
violate the mathematical regularities associated with perceptron
learning. As we noted above, traditional perceptrons have been
shown to be promising models of reorientation (Dawson et al.,
2010). In the next section, we demonstrate that this is also true of
the operant perceptron, by showing that it generates appropriate
results for both of the case studies introduced earlier in this article.

Evaluating the Operant Perceptron

To see if the operant perceptron is capable of succeeding in
which the M–S model had difficulty, we simulated both the reori-
entation and superconditioning tasks, as described below.

Reorientation

Our first simulation involved training the operant perceptron on
the Wall et al. (2004) reorientation task. First, we modeled this task
using Miller and Shettleworth’s (2007, 2008) parameters, and then
we tested for robustness by exploring the operant perceptron’s
behavior when different parameters were used.

Method. The Wall et al. task was illustrated above in Figure
1. The training set consists of four input units, used to represent the
presence or absence of the B, F, G, and W cues. Any cue could
be presented to the perceptron by activating its input unit with a
value of 1; if a cue was absent, then the activity of its input unit
was 0. B was initialized to have a 0.1 initial weight, and the other
three cues had 0 initial weight. The network’s learning rate was set
to 0.15, exactly as in Miller and Shettleworth (2007). The training
procedure was altered into an operant procedure as follows: After
each pattern (i.e., collection of cues at a location) was presented to
the network, the perceptron computed PL using Equation 5, pro-
ducing a number between 0 and 1. Then, a random number
between 0 and 1 was generated. If the network’s activity exceeded
that random number, the network was said to have “chosen” to
visit the location on this trial, and its connection weights were
updated. If the network’s activity did not exceed this number, the
network was said to have not chosen to visit the location on this
trial, and no weights were updated. This process repeats for every
pattern (location) present in the scenario. Five such networks ran
until convergence (after approximately 8,500 sweeps), and their
responses were averaged. Each condition was modeled with this
small number of repetitions because the variability between net-
works was low enough that more “subjects” were not required to
establish the statistical significance of the observed effects.

Results. The results of this simulation are displayed in Figure
4. These results are virtually indistinguishable from the M–S 2008
model, if that model was supplied with well-behaved parameters.
Specifically, the associative strengths of each cue asymptote (with-
out fluctuation or singularity) at values that produce a high prob-
ability of investigating the Correct location, an intermediate (but
low) probability of investigating the Rotational location, and a
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near-zero probability of investigating the Near or Far location. It
would seem that the operant perceptron model is capable of
learning the reorientation task as defined by Wall et al. (2004.

In order to test for robustness, the operant perceptron model
was run again with extreme learning rates under the same initial
conditions. Setting the learning rate to 0.7 did not lead to
fluctuations nor to any “crash”—rather, the perceptron con-
verged normally after approximately 1,700 sweeps. Even a
learning rate of 1.00 —which causes the M–S 2008 model to
collapse after just 12 iterations—results in the perceptron con-
verging in 
1,300 sweeps. Continuing to simulate learning
beyond convergence produces negligible changes from the pat-
tern described here.

In conclusion, we find that this operant perceptron model is
capable of empirically handling the reorientation results for
which the Miller and Shettleworth (2007, 2008) models are
acclaimed, and that the operant perceptron’s behavior is robust
to the extreme choices in learning rate that caused trouble for
the M–S model.

Superconditioning

Our second simulation trained the operant perceptron on Horne
and Pearce’s (2010) geometric superconditioning experiment. We
examined the perceptron’s probability of responding to specific
locations for evidence of superconditioning.

Method. Horne and Pearce’s (2010) superconditioning exper-
iment was presented to the operant perceptron using five inputs,
corresponding to the five cues (B, G, W, F, and N) from Figure 3
above. These cues were grouped by location and stage as described
in Figure 3, with each training pattern (i.e., each set of available
cues) representing a corner present at a given stage. The network
used a single output unit with a logistic activation function with
bias held constant at 0. Based on the parameters described in

Horne and Pearce’s experiment, the network’s learning rate was
set to 0.05, and all of its weights initialized to 0. Patterns were
presented in a random order to the network on each pass through
the training set. The perceptron’s learning algorithm was made
operant as described above.

As in Horne and Pearce (2010), these simulations ran for a
specific, fixed number of “sweeps” before passing through to the
next stage. Each stage received 5,000 sweeps of this training
(sufficient to reach asymptote) before a final, geometry-only probe
trial (consisting just of the B � G cues) was carried out. Due to the
stochastic nature of the operant perceptron’s training procedure
(which allows identical networks to make different patterns of
choices), this simulation was repeated five times for each experi-
mental condition and the aggregate responses were averaged. Each
condition was modeled with this small number of repetitions
because the variability between networks was low enough that
more “subjects” were not required to establish the statistical sig-
nificance of the observed effects.

Results. The operant perceptron’s performance on this task
over time during each of the four superconditioning stages is
presented in Figure 5. As predicted above, the partially reinforced
B and G cues acquire more negative associative strength during all
stages than they did in the M–S 2008 model (reported in Horne &
Pearce, 2010, Figure 11). After training, the experimental network
had average connection weights (associative strengths) of B � 1.3
and G � 4.91, and the control network had connection weights of
B � 0.29, G � 3.20. During geometry-only probe trials, the
networks’ mean responses to these cues—the logistic function of
B � G—are 0.998 for the experimental network and 0.970 for the
control network.

Because these responses reflect the probability of investigating
these correct-geometry-only locations, it can be concluded that
both groups of networks were capable of learning the geometry of

Figure 4. Top panel: Associative strengths acquired by the various cues (see Figure 1) during the operant
perceptron’s training on the Wall et al. (2004) reorientation task. Bottom panel: The probability with which the
perceptron will choose to investigate the various locations during training. Each location is considered
independent of the others, so these probabilities need not sum to 1 across all four locations.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

281DIFFERENTIATING MODELS OF ASSOCIATIVE LEARNING



the task (they have a high probability of visiting a corner with only
the correct geometry present). Additionally, the experimental
group’s probability of investigating a geometrically correct corner
is higher than that of the control group: The experimental group
displays evidence of superconditioning. This is in agreement with
Horne and Pearce’s (2010) animal data, and distinct from their
attempt to model the same task with the M–S 2008 model, which
produced the opposite result (a response of 0.92 in the experimen-
tal condition, and a response of 0.95 in the control condition). This
difference is small (indeed, almost identical to the difference seen
in Horne and Pearce (2010)), but statistically significant, t(4) �
�63.11, p � .01, and the difference is in the correct direction to
conclude that the operant perceptron succeeds on modeling super-
conditioning, in which the M–S 2008 model did not. Comparing
the operant perceptron’s learning (see Figure 5) with the Miller–
Shettleworth model’s behavior (Horne & Pearce, 2010, Figure 11)
makes it clear that the M–S 2008 model fails to assign sufficient
inhibitory associative strength to several cues (B and G in partic-
ular) in Stage 2 and both conditions of Stage 3, because acquisition
of inhibitory associative strength is scaled down in the Miller–
Shettleworth model as described above.

General Discussion

Miller and Shettleworth’s (2007, 2008) associative model of
reorientation is rooted in the observation that reorientation is
fundamentally a problem of operant learning. Therefore, they
endeavored to formalize this by creating an operant version of the
established Rescorla–Wagner (1972) theory of associative learn-
ing. However, their attempt to extend the Rescorla–Wagner model
in this fashion had problems.

Some of these problems have already been documented in the
literature. Dawson et al. (2008) discovered that the original M–S
model (2007) will produce impossible probabilities under a variety
of circumstances. This led Miller and Shettleworth to modify their
original model (Miller & Shettleworth, 2008). However, Horne
and Pearce (2010) found that this revised model did not correctly
model animal data collected for tasks to which the model should
apply, such as geometric superconditioning.

Other problems with the M–S model have been reported for the
first time in the current article. As shown above, when model
parameters are manipulated, the behavior of the M–S model is
unstable, producing dramatic fluctuations. Indeed, for the M–S

Figure 5. The operant perceptron learning the superconditioning task described above. The panels denote
change in associative strength for each cue (B � “Base”, G � “Correct Geometry”, W � “Wrong Geometry”,
F � “Reinforced Feature” and N � “Neutral Feature”) over time during each stage of this task. Compare with
Horne and Pearce (2010) Figure 11, which trained the M–S 2008 model on the same task but could not capture
superconditioning behavior; the operant perceptron assigns several cues (B in particular) lower associative
strength in comparison.
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2008 model, these fluctuations lead to an eventual “crash” that is
caused when the model is required to divide a value by zero.

Although previous studies (Dawson et al., 2008; Horne &
Pearce, 2010) have documented some problems with the M–S
models, they did not locate the source of these difficulties. In
addition to discussing some new problems, we have also shown
that all of these problems emerge from the structure of Equation 2.
In effect, the equation cannot properly handle situations with
uniquely inhibitory cues when those cues are paired with other,
excitatory cues. These situations lead to inappropriate scaling of
changes in associative strength when Equation 2 is employed, and
this ultimately gives rise to all of the problems described above.

However, in the current article we have done more than dem-
onstrate problems and trace their mathematical root. We have also
provided a different model that can overcome these problems. Our
alternative formalism preserves Miller and Shettleworth’s (2007)
operant-learning goal, but is anchored on the solid foundations of
artificial neural network mathematics (e.g., Rosenblatt, 1958,
1962). We have presented simulations that show this new “operant
perceptron” model corrects these problems, and is capable of
learning both reorientation and superconditioning. We believe this
operant perceptron to be a plausible architecture for modeling
reorientation task learning, which was the primary intent of the
M–S model (Miller, 2009; Miller & Shettleworth, 2007, 2008). We
have already shown that the operant perceptron can easily model
other domains; for instance, it can learn to match reinforcement
probabilities (Dawson et al., 2009). The extent to which the oper-
ant perceptron can match the ability of the traditional perceptron to
model the further intricacies of reorientation (Dawson et al., 2010)
or to model a variety of classical conditioning paradigms (Dawson,
2008) is clearly a matter for future research.
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Appendix

Technical Appendix

In the prior sections, we described a number of problems in the
Miller and Shettleworth (2007, 2008) associative models. We
described these problems purely in terms of the behavior of the
models. However, the source for this erroneous behavior is ultimately
mathematical, and emerges primarily from Miller and Shettleworth’s
choice to scale the Rescorla–Wagner (1972) equation by Equation 3
or Equation 4. This Appendix will elaborate upon this, demonstrating
why such scaling is incorrect from the perspective of calculus, and
why such scaling produces incorrect results.

The main characteristic of the Miller and Shettleworth (2007,
2008) model is that it multiplies the Rescorla–Wagner (1972)
equation by a probability term. The intention of this multiplication
is to make the Rescorla–Wagner model operant in nature. How-
ever, it is this multiplication that causes the problems that were
identified earlier in this article. This multiplication also causes the
model to make unexpected (and, we believe, unintentional) claims
about time.

In Rescorla and Wagner (1972), the parameter � is explicitly
defined as a learning rate parameter—a rate reflecting how much
learning takes place within a given amount of time. � is held
constant when the model is employed, because to do otherwise
would “beg justification” (p. 82). A consequence of holding learn-
ing rate constant over each iteration of the model is that the model
implies a constant amount of time passes during each iteration.
However, because the learning rate � is held constant, this “time
step” is usually suppressed when writing the equations.

We now express the Rescorla–Wagner equation in terms con-
sistent with Miller and Shettleworth’s (2007) approach, making
time explicit:

�Vi�t������ � � Vi�ti�� (a1)

Here, the subscript i refers to iteration: the change in weights
from the current iteration to the next depends on the sum of the
weights at the current time. In this equation, the learning rate
parameter � is proportional to the amount of time that passes per
iteration, (�t)/(�i). If the equation is consistently applied to every
cue at every iteration, then �i � 1, and thus � is proportional to �t.
Because Miller and Shettleworth always apply their equation at
every iteration, this assumption holds. Therefore, by subsuming
the constant of proportionality into � and setting � � �t, we can
substitute into Equation a1 and rearrange to form a ratio, as
follows:

�Vi�t� � ��� � � Vi�ti���t ¡
�Vi�t�

�t
� ��� � � Vi�ti��

(a2)

By the definition of a limit, as the time step �t approaches zero,
this ratio will approach the instantaneous time derivative of asso-
ciative strength, and thus:

lim
�t¡0

�Vi�t�
�t

�
�Vi�t�

�t
(a3)

Because this equivalence holds, the model’s associative strength
will change at the same rate on every iteration (Equation a2) as it
does at each unit of time (Equation a3).

In defining their models, Miller and Shettleworth (2007, 2008)
multiply the entire Rescorla–Wagner equation by some probability
term PL. Both the 2007 (Equation 3) and 2008 (Equation 4) PL

terms are functions of associative strength at a particular iteration
Vi, which is itself a function of time, and therefore Equation 3 and
4 are both also functions of time. Both PL equations can be
expressed more generally as:

Pi�Vi�t�� � �P o V��ti� (a4)

Simply multiplying this term into the Rescorla–Wagner equa-
tion, as Miller and Shettleworth (2007, 2008) have done in Equa-
tion 2, introduces a second time dependency to the system:

�(� � � Vi�ti� � �P o V��ti� �
�Vi�t�

�t
� �P o V��ti� (a5)

If � � 1 (and, as a consequence, �t � 1), this equation reduces
to the right side of Equation 2, which Miller and Shettleworth label
“�V”. However, this is not the equivalent of �V if �t � 1,
rendering Equation a3 invalid:

lim
�t¡0

��Vi�t�
�t

� �P o V��t���
�Vi�t�

�t
(a6)

Rather, the proper time derivative would handle this second time
dependency through applying the chain rule to Equation a4 and
accounting for the resulting �V/�t term (the exact form of which
would depend on whether Equation 3 or Equation 4 was used for
PL). Miller and Shettleworth (2007, 2008) did not do this, but
continued to treat the composite Equation 2 as if it were supplying
a proper change over time. Instead, the additional uncontrolled
time dependency causes time in the simulation to flow at different
rates for each location, depending on the current net associative
strength of that location.

(Appendix continues)
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This gives rise to the scaling problems discussed above: The
scaling introduced by different PL values is effectively changing
the learning rate at each location on a given iteration, without the
justification that Rescorla and Wagner (1972) “beg,” which results
in different amounts of time passing between iterations at each
location (including exactly zero time between iterations for net-
negative locations in the M–S 2008 model, as PL � 0 in those
cases). However, the model determines this scale by referencing
weights at a given iteration, instead of after a given amount of time
has passed—and due to the effective learning-rate scaling intro-
duced by PL, these are no longer equivalent considerations (Equa-
tion a6). In effect, this scaling gives rise to a situation in which the
change in weight at one iteration may alter the next moment for
one cue, but some moment in the past for a different cue, allowing
the future to influence the past. This is, of course, impossible.

For illustration, we return to the Wall et al. (2004) reorientation
task described earlier, using Miller and Shettleworth’s (2007,
2008) original parameters. Figure A1 directly compares both the
M–S 2008 and M–S 2007 models’ behavior reported in terms of
iteration with their behavior reported in terms of time. Normally
for Rescorla–Wagner models, the amount of time that passes at
each iteration is defined by �, and scaled by the dimensionless
salience term �; time passing per iteration is therefore proportional
to �� (a constant). With Miller and Shettleworth’s Equation 2,
these are further scaled by the dimensionless PL term, which varies
over time. Therefore, in Figure A1, the “time” axis reflects the
cumulative value of ��PL at each iteration.

Observe from Figure A1 that both models consider “simultane-
ous events” (such as the highlighted 60th iteration) which actually
reflect different points in time. The nature of this asynchrony
depends on the choice of equation for PL. If Equation 3 is used, PL

is allowed to go negative for locations with sufficiently inhibitory
net associative strength (Dawson, Kelly, Spetch, & Dupuis, 2008),
therefore �t becomes negative and time begins to flow backward.
The singularities in the M–S 2007 model form immediately fol-
lowing when t � 0 for the Wrong cue. (This corresponds to the
exact point in which �VL changes signs in Equation 3.) The
positiveness correction employed by the M–S 2008 model pre-
vents time from flowing backward, but does not prevent a given
iteration from reflecting different points in time. In fact, when
Equation 4 sets PL to 0, �t is also set to 0 for the corresponding cue
(Wrong), such that every subsequent iteration reflects the same
point in time for locations containing that cue.

Behavior of this nature will show up as a natural consequence of
the mathematical choice to multiply Equation 1 by some other
function (creating an alternate form of Equation 2), regardless of
the nature of that other function, without also controlling for the
uncontrolled time dependency. Simply replacing Equations 3 and
4 with Equation 5 (the logistic function) to produce a “logistic
M–S model,” for instance, will still produce errant behavior, as
Equation a6 still holds in such a case.

In contrast, the operant perceptron model presented above does
not suffer from this problem, as the underlying mathematics for
updating its connection weights are formally equivalent to the
Rescorla–Wagner equation (Dawson, 2008), and no scaling is
applied. Although the exact sequence of locations visited by the
network may vary the amount of time the network spends at each
location, this is functionally equivalent to adjusting the number of
times each location is presented to the network—a course of action
that does not introduce any uncontrolled time dependencies into
the calculations for �V.

(Appendix continues)
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Figure A1. The Wall et al. (2004) task, as interpreted by both the M–S 2008 (left) and M–S 2007 (right)
models. The lower panels rescale the horizontal axis by ��PL, becoming proportional to time that has passed for
each cue; the 60th iterations (considered to be simultaneous by the model) are highlighted.
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