
Jl. of Educational Multimedia and Hypermedia (2002) 11(3), 221-235

An Introduction to Custom WebBrowsers for the
Qualitative Study of Hypertext Navigation

PATRICIA M. BOECHLER AND MICHAEL R.W. DAWSON
 University of Alberta, Canada
patricia.boechler@ualberta.ca

KELVIN R. BOECHLER
Saskatchewan Institute of Applied Science and Technology

Canada

For the benefit of researchers new to custom programming,
this article presents a discussion of the advantages of custom
applications and an example of such a program with a de-
scription and explanation of some of the programming code
used to create it. Visual Basic 6.0 is an Integrated Develop-
ment Environment (IDE) that allows researchers to custom
design interface forms using standard window controls and
to code routines using the Visual Basic programming lan-
guage. Visual Basic 6.0 (Professional Edition) also includes
specialized controls such as the WebBrowser Control that
enables researchers to add hypertext navigation to an appli-
cation with a highly adaptable browser interface. This collec-
tion of functions provides a particularly valuable tool for in-
vestigating hypertext navigation and user interactions with
document features.

 The term “hypertext” refers to any electronic document or document
collection of interconnected units of information. A prominent example of a
large hypertext system is the World Wide Web (WWW or Web). On a
smaller scale, customized, constrained systems of hypertext documents
(intranet systems) have become commonplace in work and educational
environments.

222 Boechler, Dawson, and Boechler

Unfortunately, the cognitive processes involved in navigating through
even a single hypertext document are not understood clearly. This is largely
because the task of navigating in hypertext involves the integration of many
complex cognitive processes within a very multifaceted environment. The
multitudes of variables that a navigation task presents demands methodolo-
gies that control the interface users see and provides flexibility for collecting
diverse types of data. This article outlines a custom application, pro-
grammed using Visual Basic 6.0 that provides both of these benefits.

 Controlling the Interface

 The Visual Basic ActiveX WebBrowser Control included in Visual Ba-
sic 6.0 creates a highly adaptable web browser that allows for the manage-
ment of options available to users of hypertext documents. This is important
for two reasons. First, to access information about the cognitions involved in
hypertext use, a pared-down, sparse version of browsers and hypermedia
pages may be desirable. Custom programming allows researchers to intro-
duce new elements to the browser controls as well as eliminate unwanted
controls resulting in interface elements that are specifically applicable to the
question of interest. For example, for some research questions, the elimina-
tion of options such as the back, forward, or print buttons from the browser
menu may be favorable.

Second, a custom browser ensures a novel environment for every user
regardless of their prior experiences with standard browsers. Pretesting users
on previous computer use is helpful but these measures usually rely on gen-
eral information such as how often a computer is used within a certain time-
frame or the number of activities a user engages in on a regular basis (e.g.,
e-mail, word processing). Questionnaires can result in ambiguous responses
depending on the questions asked and a user’s interpretations of the ques-
tions. Ensuring that every user begins the research task with an equal level
of familiarity with the browser eliminates one extraneous variable.

 Collecting Appropriate Data

 Often, hypertext researchers are interested in tracking very quantitative
navigation responses such as time spent on pages, number of pages access-
ed, and order of pages. A custom program can provide procedures for data
collection that are strictly controlled by a researcher, eliminating any impact

An Introduction to Custom WebBrowsers 223

of features inherent in other standard tracking mechanisms such as browser
history lists or server logs.

For example, browser history lists make use of a variety of procedures
for recording page access. To optimize the history list, some methods erase
prior revisits and only retain the most recent instance of access (for further
description of history lists see Tauscher & Greenberg, 1997). By creating a
custom application, a local log file of users’ movements can be constructed
to record every single move with no elimination of repeated page accesses
that can happen with the typical history lists of standard browsers.

For some types of measures, collecting data through server logs pre-
sents obstacles as well. The procedures used by the server to cache items
may skew data by affecting the way pages are delivered to the user. For ex-
ample, as numerous users access a single page numerous times, the server
retains the page in memory and will load that page quickly relative to a page
that is not held in memory. This results in navigation experiences that may
be different from user to user. Also, because server use involves multiple us-
ers on a shared network, system traffic could interfere with timed results as
page delivery could be delayed by network congestion. By having tracking
procedures local to each individual work station, that is, creating local logs
instead of server logs, the above-mentioned problems can be avoided.

The program outlined in this article also allows for seamless transitions
between the browser that displays web pages and additional cognitive tasks
that provide other types of information about a user’s navigation experience.
For example, in the study outlined, (Boechler & Dawson, 2002a; Boechler
& Dawson, 2002b) users are required to complete an information search
task of 10 questions using a customized browser. During this task, naviga-
tion data is collected as well as a user’s answers to the ten questions. Users
use the mouse to select sections of text as their answer to each question.
This method avoids data that is difficult to process due to users’ typing mis-
takes or inconsistent use of terms. When this task is complete, the program
switches from the browser to a series of psychological tasks about the docu-
ment—a free recall task, a recognition task and a distance-like ratings task
recording all responses in a flexible format (text files) for subsequent data
analysis.

 Advantages of Visual Basic 6.0

 It is true that other programming formats include an adaptable browser
function, so why Visual Basic 6.0? For researchers new to custom applica-
tions, there are several pragmatic reasons for using Visual Basic. First, it is

224 Boechler, Dawson, and Boechler

easily accessible. Versions of Visual Basic are included in popular office
suite software packages. Second, Visual Basic is well–supported through
reference books and extensive online help. Third, Visual Basic is a relatively
simple programming environment, compared to many other programming
languages.

Educational and psychological researchers are faced with an often-con-
fusing plethora of technological possibilities for collecting relevant hyper-
text data. This article is meant to provide a starting point for researchers
who may wish to pursue the use of custom applications. It provides an ex-
ample of a computer program that uses a relatively simple programming en-
vironment to gather basic navigation data as well as collect data on other be-
haviors that may be of interest to the hypertext researcher.

First, the development of the interface of the document is described.
Second, the coded routines that accompany the interface are detailed.

 INTERFACE DEVELOPMENT

 The hypertext interface is created in two parts: (a) the actual hypertext
pages with the specified content and links are constructed and (b) the Visual
Basic application forms, including the WebBrowser Control that displays
the web pages, are programmed.

 Developing the Visual Basic Application

 Visual Basic 6.0 is an Integrated Development Environment (IDE) that
allows a researcher to design, run, test, and debug Windows applications
using the Visual Basic language. Development in the Visual Basic 6.0 envi-
ronment involves placing standard components onto a visual container
called a form, thereby constructing the user interface. Coded routines are
written to respond to a user’s interactions with the form’s components.
Each control has a certain set of events that will generate responses
(eg., mouse click, resized, document loaded). Several forms, which ap-
pear as separate windows, were constructed for this application, includ-
ing the form that contains the specialized component that displays web
pages, the WebBrowser control.

An Introduction to Custom WebBrowsers 225

 The Development of Forms

Individual forms for the interface are constructed to accomplish certain
tasks. Tasks are subdivided into user actions that are represented as various
controls in strategic positions on the form. Each form in the application is
maintained in a file designated by the form name plus the extension .frm.
Form files contain the graphic interface of the form and also text files that
contain code to describe the controls on the form and the events that corre-
spond to them. During the development phase, switching between the graph-
ic interface and the code window of the form is easily accomplished with
only one icon selection.

There are several types of standard window controls that can be includ-
ed on a Visual Basic form. For example, Textboxes are used to display and
enter text. Command buttons represent actions that will occur when a user
activates that control. Option buttons are presented in groups and are used
when a user is required to make one choice out of several options. The
CheckBox control allows a user to make several choices from a list of op-
tions. In Figure 1, the Administrative Login form shows an example of a
form with labeled textboxes (the spaces provided for user and password sub-
missions), option buttons (the buttons used to select the appropriate condi-
tion) and a command button (the “submit” button). Such controls are added
by selecting and placing icons from the General Toolbox menu onto the
form. Numerous properties can be selected for each control (e.g., for the
textbox control, properties for the number of text lines, the inclusion of
scroll bars, and the maximum length of the entered text can be chosen).
Properties can either be set from the Properties window or written into the
code. As the project is developed, the Project Explorer provides a list of the
components (e.g., forms) that have been added to the project.

 CODE THAT ACCOMPANIES THE INTERFACE

 Controls can be activated by several types of events triggered by user
interactions in the form of either mouse use (e.g., clicking, press and release
of the mouse button, or movement of the mouse) or keyboard use (e.g., key
press, changes to text boxes). Other events are triggered by changes in con-
trol state (e.g., the WebBrowser’s documentComplete is triggered when the
control has successfully loaded a page). Whenever a control on a form is ac-
tivated, the program will initiate the event routines that accompany that con-
trol. For example, on the Login form (Figure 1), once selections are made

226 Boechler, Dawson, and Boechler

between the option buttons in the dialog boxes, clicking on the “submit” but-
ton initiates the subroutine coded for the “on click” event as outlined in List-
ing # 1. Note the initial section of code for each form declares the variables
local to that form using the Dim (dimension) statement. Local variables that
are intended to be available only to a specific subroutine can also be de-
clared within individual subroutines.

Figure 1. Administrative login form

An initial administrative login form, such as the one previously de-
scribed, can be used to specify a particular condition or version of stimuli
for each individual subject. Later in the application, flow control statements
(e.g., “If-Then,” “Select Case”) can access the selections made in the initial
Login form and use them to execute only the appropriate statements for the
specified stimuli. In addition to the administrative login form, this applica-
tion includes a user login form that collects identification data particular to a
given subject (see Figure 2).

An Introduction to Custom WebBrowsers 227

LISTING #1—ADMINISTRATION LOGIN FORM CODE

Option Explicit
Public LoginSucceeded As Boolean
Dim QuestionSelected As Boolean
Dim ConditionSelected As Boolean

Private Sub cmdOK_Click()
‘***
‘Event: User clicks OK button
‘Response:
‘ If the password is correct
‘ Record login success
‘ Check if one of the navigation aid conditions is selected
‘ Check if one of question wording options is selected
‘ If both question wording and navigation condition have been

selected
‘ Close this form
‘ Move to the test subjects login (LoginForm.Show)
‘ Otherwise
‘ Indicate required information is missing
‘ Otherwise
‘ Indicate the password is incorrect
‘ Set up the form for the user to re-enter password
‘ Hide Administrative Login Form
‘ Show test subject login form (LoginForm.Show)
‘***
If (txtPassword.Text = Psswrd) Then

LoginSucceeded = True
ConditionSelected = ((Option1(0).Value) Or (Option1(1).Value) _

Or (Option1(1).Value) Or (Option1(2).Value) Or
(Option1(3).Value))

QuestionSelected = ((Option2(0).Value) Or (Option2(1).Value))
If (QuestionSelected) And (ConditionSelected) Then

Me.Hide
LoginForm.Show

Else
MsgBox “Something’s Missing!”

End If
Else

MsgBox “Invalid Password, try again!”, “Login”
txtPassword.SetFocus
SendKeys “{Home}+{End}”

End If
End Sub

228 Boechler, Dawson, and Boechler

Figure 2. User login form

 Displaying the Web pages

 When the Browser Form is loaded, the “select case” structure is used to
direct the program to present the appropriate instruction page and the navi-
gation aid to be used in that specific test session (Listing # 2, Subroutine #1
and #2 from the Browser Form set-up routines). The four possible condi-
tions in this study were named Alpha, Hier, Spatial, Spatialhier.

LISTING # 2—SUBROUTINE# 1—BROWSER FORM CODE (SET-UP)

Dim StartTime As String
Dim EndTime As String
Dim PageTime As String
Dim LastPage As String
Dim Answer As String
Dim Question As Byte
Dim Page As String
Dim InstructPage As String
Dim Done As String

Private Sub Form_Load()
‘***
‘Event: Form Loads
‘Response:
‘ Initialize start and end times for tracking user

An Introduction to Custom WebBrowsers 229

‘ Open navigation log files
‘ Select instruction page based on admin options set in AdminLogin
‘ Navigate to the instruction page
‘***
Let EndTime = Timer
Let StartTime = Timer
Open (App.Path & AnswerFile) For Append As #3
Open (App.Path & LogFile) For Append As #2
Let Frame1.Visible = False
Let Submit.Visible = False
Let LastPage = App.Path & InstructFile
Select Case Condition
 Case “Hier”, “Alpha”

InstructPage = “\instructions2.htm”
 Case “Spatial”, “Spatialhier”

InstructPage = “\instructions1.htm”
 Case Else

InstructPage = “\instructions1.htm”
End Select
WebBrowser1.Navigate App.Path & InstructPage
End Sub

LISTING # 2—SUBROUTINE# 2—BROWSER FORM CODE (SET-UP)

Private Sub Continue_Click()
‘***
‘Event: Continue button clicked
‘Response:
‘ Set up form for questions
’ Select navigation aid page based on admin options set in AdminLogin
‘ Navigate to the navigation aid page
‘***
Question = 1
Frame1.Visible = True
Continue.Visible = False
Change_Question (Question)
Select Case Condition

 Case “Hier”
Page = “\hierlist5.htm”

 Case “Alpha”
Page = “\alpha.htm”

 Case “Spatial”
Page = “\spatial.htm”

 Case “Spatialhier”
Page = “\SpatialHier.htm”

 Case Else
Page = “\alpha.htm”

End Select
WebBrowser1.Navigate App.Path & Page
End Sub

230 Boechler, Dawson, and Boechler

 Loading the Browser Form also initializes the timer, opens the ap-
propriate data files, and presents the desired controls on the form (e.g.,
“submit” command button). The final line of code in the second subrou-
tine (Listing #2, subroutine #2) of the Browser Form instructs the Web-
Browser Control to navigate to the designated page, which appears in
the window at run time. Once the WebBrowser Control is functioning,
the links embedded in the individual web pages allow a user to revisit
the navigation aid and instructions page. Each successful navigation
triggers the WebBrowser’s “Document Complete” event, which causes
the subroutine WebBrowser1_DocumentComplete to execute, calculat-
ing, and recording the time a user has spent on the previous page (Listing
#3, Subroutine #5, #6).

LISTING # 3—SUBROUTINE #5, #6—BROWSER FORM CODE
(OPERATIONAL)

Private Sub WebBrowser1_DocumentComplete(ByVal pDisp As
Object, URL As Variant)

‘***
‘Event: User navigation to new document page
‘Response:
‘ Log time taken on last page
‘ Prepare for next log entry by recording the page navigated to
‘ as the last page visited
‘***
LogTime
Let LastPage = URL
End Sub

Private Sub LogTime()
‘***
‘Event: Called directly by coded routines
‘Response:
‘ Get the time spent on the last page and record it in the log
‘ Reset the start time for the next page
‘***
Let EndTime = Timer
Let PageTime = EndTime - StartTime
Write #2, SubjectInfo.Name, LastPage, PageTime
Let StartTime = Timer
End Sub

An Introduction to Custom WebBrowsers 231

 Developing Data Files

 For the program to open data files and store data within them, certain
variables must be accessible to all Forms and Modules throughout the run
time of the application. These variables must be declared as Public (rather
than Dim) and as Form variables or within Modules. An example of public
variables declared within a module appears in Listing #4. This module also
declares the set value for the password for the initial administrative login.

LISTING #4—MODULE #1 FOR DECLARATION OF PUBLIC VARIABLES

‘***
‘Module: Module1
‘File: Module1.bas
‘Purpose: To store and consolidate variables and constants required by all

forms
‘**
Type SubjectData

Name As String * 30
ID As Long
Gender As String

End Type
Public SubjectInfo As SubjectData
Public Const SubjectFile = “\Subject.txt”
Public Const LogFile = “\LogFile.txt”
Public Const AnswerFile = “\Answers.txt”
Public Const Recallfile = “\Recall.txt”
Public Const RecogFile = “\Recog.txt”
Public Const RatingsFile = “\Ratings.txt”
Public Const InstructFile = “\Instructions.htm”
Public Const Psswrd = “space”
Public RatingsQuestion As String
Public Condition As String

In the study described, users’ responses to four tasks were collected and
stored in text files that were automatically constructed when the user inter-
acted with specific forms in the program. For three of the tasks (the free re-
call, recognition, and ratings tasks), this merely involved transferring the
typed responses or option button and checkbox responses of the user to text
files. The fourth task, the initial information search task, required the storage
of selections of text, which necessitated a slightly different approach. In or-
der to check the accuracy of a user’s search efforts, users were instructed to
highlight the answer with the mouse (e.g., phrase or sentence) for each question

232 Boechler, Dawson, and Boechler

from the page on which they found it and then submit the answer by clicking
on a “submit” command button. The code that responds to the “Click” event
takes advantage of the fact that the WebBrowser is an OLE (Object Linking
and Embedding) container for the active HTML page. An OLE control al-
lows the programmer to insert objects from other applications into the Visu-
al Basic form, so the functions of that application are available to the VB
program. In this case, the OLE container accesses the Visual Basic docu-
ment through an interface that initiates the correct implementation of a com-
mon command. One of the commonly supported commands is to copy the
currently highlighted or selected text to the clipboard. Using the execCom-
mand method of the active document’s interface with “Copy” as the indicat-
ed command, the highlighted or selected data is copied to the clipboard. The
globally available (common to and useable by all) clipboard was then ac-
cessed by the research program, which retrieved the data to a local variable
and wrote the information to file (Listing # 3, Subroutine #3, #4). Constrain-
ing a user to copying and pasting information to the clipboard avoids com-
mon problems like typing mistakes or user interpretation of data, which
would make subsequent data verification or validation difficult.

LISTING # 3—SUBROUTINE #3—BROWSER FORM CODE (OPERATIONAL)

Private Sub Found_Click()
‘***
‘Event: Found answer button is clicked
‘Response:
‘ If attempting to select answer from the navigation aid
‘ Indicate this action is in error and continue current question
‘ Otherwise
‘ Log time taken on last page
‘ Set up for user to submit the answer
‘***
If ((“\” & WebBrowser1.LocationName) = Page) Then

MsgBox (“Answers cannot be found on this page.”)
Else

LogTime
Found.Visible = False
Submit.Visible = True

End If
End Sub

An Introduction to Custom WebBrowsers 233

LISTING # 3—SUBROUTINE #4—BROWSER FORM CODE (OPERATIONAL)

Private Sub Submit_Click()
‘***
‘Event: Submit answer button is clicked
‘Response:
‘ Empty the clipboard
‘ Copy the user highlighted information from the document
‘ to the Answer variable by having the WebBrowser’s document

object
‘ use its ExecCommand to perform a standard command, in this

case copy
‘ If there is nothing in Answer then
‘ Indicate to the user there has been a mistake and exit
‘ Otherwise
‘ Write the information to the log files
‘ If that was the last question then
‘ Log the time for this last event
‘ Move to title recall form
‘ Otherwise
‘ Change to the next question
‘ Set up to allow user to select found answer
‘ Reset new page start time
‘ Navigate to navigation aid
‘***
Clipboard.SetText (“”)
WebBrowser1.Document.ExecCommand (“Copy”)
Let Answer = Clipboard.GetText
Let Done = “Done”
If (Answer = “”) Then
 MsgBox (“Please highlight the answer before clicking submit”)
Else
 Write #3, SubjectInfo.Name, Question, Answer
 Write #2, Done
Question = Question + 1

 If (Question = 11) Then
LogTime
Me.Hide
TitleRecall.Show

 Else
Change_Question (Question)
Submit.Visible = False
Found.Visible = True
WebBrowser1.Navigate App.Path & Page

End If
End If
StartTime = Timer
End Sub

234 Boechler, Dawson, and Boechler

 The collection of efficiency measures was accomplished using a log
file of a user’s movements through the document which records each page
accessed including revisitations, the time spent on each page and the page
where a user found the information required by the search task (Figure 3 an
example of the log file). The log file was constructed by writing successive
lines in the log file each representing a record of specific structure (eg.,
User, Page, Time Spent). Each record is a series of comma delimited pieces
of information. The new line character separates individual records. The for-
mat of the log files was chosen because it offers a format that is tool inde-
pendent providing guaranteed access while being of a common format used
by data analysis tools that import data from other sources. This allows for
easy organization of data beyond the data collection phase.

“Subject 1 “,”C:\VB Project2\Instructions.htm”,”0.719999999993888"
“Subject 1 “,”C:\VB Project2\instructions1.htm”,”47.5800000000017"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”19.4700000000012"
“Subject 1 “,”C:\VB Project2\Shtypes.htm”,”25.9100000000035"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”4.63999999999942"
“Subject 1 “,”C:\VB Project2\Shclub.htm”,”18.6100000000006"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”1.44999999999709"
“Subject 1 “,”C:\VB Project2\Shsac.htm”,”23.9499999999971"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”1.68000000000029"
“Subject 1 “,”C:\VB Project2\Shconjugat.htm”,”23.0600000000049"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”1.83999999999651"
“Subject 1 “,”C:\VB Project2\ShChytrids.htm”,”26.1800000000003"
“Subject 1 “,”C:\VB Project2\SpatialHier.htm”,”1.13999999999942"
“Subject 1 “,”C:\VB Project2\Shlichen.htm”,”24.5999999999985"

Figure 3. Example of the logfile Data

 CONCLUDING REMARKS

 The Visual Basic program outlined provides an accessible and effec-
tive means of tracking the processes involved in hypertext use. Once the
custom browser program is created, altering the content and functions of the
individual hypertext pages can modify the task to address additional re-
search questions. To accompany navigation data, relevant tasks such as re-
call and recognition tasks can be programmed for online data collection in a
text format that is easily manipulated for subsequent data analysis.

An Introduction to Custom WebBrowsers 235

 References

Boechler, P.M., & Dawson, M.R.W. (2002a). Connections between perfor-
mance, path patterns and mental representations in hypertext navigation.
Journal of Educational Multimedia and Hypermedia, 11(2), 95-115.

Boechler, P.M., & Dawson, M.R.W. (2002b). The effects of navigation tool in-
formation on hypertext navigation behavior: A configural analysis of page-
transition data. Manuscript in preparation.

Tauscher, L., & Greenberg, S. (1997). How people revisit web pages: Em-
pirical findings and implications for the design of history systems. In-
ternational Journal of Human-Computer Studies, 47, 97-137.

