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Abstract - Despite inquiry, the existence of early event-related potential (ERP) correlates of face 
memory has yet to be confirmed. We investigated the possibility that such correlates exist but cannot 
be reliably detected by linear analysis. We compared the abilities of artificial neural networks 
(ANN’s) and ANOVA in classifying ERP’s from right temporal areas elicited by recognized and 
novel faces. ANOVA’s were unable to distinguish between ERP types; however, ANN’s were. 
Results suggest that early ERP’s recorded over right areas do index memory related activity, but that 
this activity is in the form of higher-order relationships between voltage and time. Wiretapping 
revealed that classification was achieved through coarse coding in the hidden units and that a subset of 
timepoints seemed to be driving their activity. Although much remains to be resolved, these 
preliminary results provide support for early face memory effects and attest to the utility of ANN’s in 
ERP analysis.  
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1. Introduction 

 
Memory can be conceptualized as the result of processing in two cortical areas: unimodal and transmodal 

association areas [1]. Unimodal areas are modality specific and receive projections from primary sensory cortex, 
whereas transmodal areas receive inputs from more than one modality. Within a modality, it is also possible to 
further conceptualize memory as being the result of general and stimulus specific processes. Event-related potential 
(ERP) studies have associated visual memory with two effects that likely reflect the activity of areas involved in 
general memory because they are elicited by different stimuli and experimental contexts. First, ERP’s to 
remembered items show a positivity relative to new items that occurs after about 400ms over parietal regions. This 
has been found with both words [2-5] and faces [6, 7]. The second effect is a sustained positivity over frontal areas, 
which occurs later than the parietal effect and has also been found with words [3-5] and faces [6, 7]. 

These results suggest that general visual memory effects occur relatively late after stimulus presentation. 
However, the timecourse of early face specific activity remains uncertain, especially as it pertains to memory. 
Neuroimaging [e.g., 8] and intracranial [e.g., 9] studies have identified right temporal lobe areas, particularly the 
right fusiform gyrus, as putative face sensitive areas. Although neurons in the macaque temporal lobe show early 
latency changes as a face becomes familiar [11], ERP evidence from humans is mixed. Electrophysiologically, 
fusiform activity is correlated with the N200, a negative deflection that occurs 200ms after face presentation and is 
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maximal over right occipitotemporal areas [10]. Some studies have shown evidence of face memory effects over 
right temporal areas during the timeframe of the N200 [e.g.,12, 13], while another study reports memory effects as 
early as 50ms [14]. However, other studies of face memory have not replicated these effects [e.g., 6, 7, 15-17]. 

There could be several explanations for these inconsistencies. We were interested in the possibility that 
memory-related activity could be represented in early latency ERP’s from right temporal sites that are believed to 
exhibit face specific activity, but conventional methods of statistical analysis may not consistently detect them. The 
current study explored this possibility by comparing the ability of linear techniques and artificial neural networks 
(ANN’s) to discriminate between ERP’s elicited by remembered and novel faces recorded from right temporal sites.  
ANN’s offer advantages over analyses based on the general linear model, particularly when they are employed for 
pattern recognition [18]. Because ANN’s are taught by providing them feedback about their performance, they can 
tolerate noisy data [19] and detect complex, nonlinear interactions between input features that are not normally 
detected by conventional techniques. Therefore, they have the potential to be powerful tools for ERP analysis.  

This study explored this potential by determining whether ANN’s could distinguish between early latency 
ERP’s recorded from right temporal sites to correctly recognized old and new faces, and comparing these results to 
those obtained using analysis of variance (ANOVA). Furthermore, if ANN’s were successful, we were interested if 
they could elucidate the timecourse of these ERP memory effects recorded over face-sensitive cortical areas. 

 
2. Methods 

 
Subjects 

The sample consisted of 54 right-handers with normal or corrected-to-normal vision participated for course 
credit or paid participation. After obtaining written consent, participants were seated in a soundproof, shielded 
chamber and EEG recording equipment was applied. Four subjects were rejected because of equipment problems, 
and 3 were rejected due to excessive artifact. The final data set consisted of 47 subjects (19 male, 28 female). 

 
Materials and Methods 

The stimuli consisted of 240, 3.5 x 2.7 inch, black-and-white photos of unfamiliar faces taken from the 
Purdue University, University of Stirling, and University of Northern British Columbia face databases. In each of 4 
blocks, participants studied 30 faces in random order, and then performed a recognition test that included 30 studied 
and 30 new faces. The assignment of faces to the old and new conditions was counterbalanced. Trials consisted of a 
fixation (500 ms), a face (400 ms), a fixation (1600 ms), a response selection screen until a response was made, and 
a blank screen (1000 ms). The fixation was a 3.5 by 2.7 inch gray rectangle. At study, subjects were asked to study 
the faces for a subsequent memory test. At test, a response screen prompted subjects to make an old/new decision. 
Subjects made their responses by pressing keys with different hands. Hand use was counterbalanced.  

 
ERP methods 

EEG was collected from 32 Ag/AgCl electrodes embedded in a Quikcap (Neurosoft Inc., Sterling, Virginia). 
Sites included frontopolar (FPI, FP2), frontal (F7, F3, FZ, F4, F8), frontocentral (FC3, FZ, FC4), central (C3, CZ, 
C4), centroparietal (CP3, CPZ, CP4), parietal (P3, PZ, P4), frontotemporal (FT7, FT8), temporal (T7, T8), 
temporoparietal (TP7, TP8), and occipital (O1, OZ, O2) electrodes with linked mastoids as a reference. Horizontal 
eye movements were monitored with bipolar electrodes on the outer canthus of each eye; vertical movements, from 
electrodes placed above and below the left eye. EEG was recorded with a sampling rate of 500 Hz for 1700 ms 
starting 100 ms prior to face onset. Channels were amplified with a filter bandwidth of 0.03 - 50 Hz. Trials with 
values above 100 or below -100 µV were excluded. ERP’s were averaged according to 2 categories: correctly 
classified old (hits) and new faces (CR’s). The grand-averaged ERP’s for the first 500 ms after face onset are shown 
in Figure 1 for the electrodes of interest (FT8, T8 and TP8). 

 
3. Results 

  
Two types of analyses were performed on the three electrode channels of interest: FT8, T8, and TP8. The 

first was a linear analysis of the data via repeated measures ANOVA; the second, analysis with ANN’s. 
Repeated measures ANOVA’s were performed for each of the three channels on the first 500 ms of data 

after face onset from each of the temporal electrode channels. Data from each channel was parsed into 25 contiguous 
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Figure 1. Grand-averaged voltages (µV) obtained 
from selected electrodes during  face presentation. 
 

Figure 2. The network architecture used in this 
study. Average standardized voltage values 
represent averaged standardized ERP’s obtained 
from each subject for each ERP type 

20ms epochs that were also used as ANN inputs. 
Each electrode site was analysed with trial type (hit 
vs. CR’s) and time (25 x 20ms epochs) as within-
subjects factors. None of the ANOVA’s was able to 
detect reliable differences between ERP’s to hits and 
CR’s during the first 500ms at any electrode site 
(main effect of type, type x time interaction, all F’s < 
1, p’s>.05).  All ANOVA’s did find a significant 
effect of time, indicating that voltages were changing 
over time. In order to keep results as similar as 
possible to the ANN analysis, ANOVA’s were 
repeated using within-subject standardized averaged 
voltage values for a 20ms epoch. Although it was not 
possible to assess main effects because of 
standardization, no time by type interactions were 
significant (all F’s < 1, p’s>.05). Three ANN’s (one 
for each channel) were trained to discriminate 
between the two ERP types. To promote training and 
reduce network complexity, an input representation 
scheme based on [20] was used. Each ANN had 25 
input units, each corresponding to the within-subject 
standardized averaged voltage values for a 20ms 
epoch, three hidden units and one output unit. All 
processing units used a logistic activation function. 
This architecture is shown in Figure 2 and was 
adopted because pilot studies indicated that ANN’s 
with these specifications could discriminate between 
hits and CR’s with the fewest number of hidden units 
and could generalize well to new cases. The output 
unit was trained to generate a response of 1 to ERP’s 
corresponding to hits, and a response of 0 to ERP’s to 
CR’s.  

The data from 47 subjects was used to 
construct two data sets; a training and a test set. The 
training set consisted of data from 42 subjects (42 
hits and 42 CR’s), while the test set contained data 
from 5 randomly selected subjects (10 patterns, 5 of 
each type). Data from the test set was not used for 
training. The ANN’s were trained using the 
generalized delta rule [21]. Initially, all connection 
weights and processing unit biases were randomly 
assigned values between 1.0 and -1.0. The networks 
were trained with a learning rate of 0.075 and zero 
momentum. Weights and biases were updated after 
each training pattern presentation. Each pattern was 
presented once during a “sweep” of training; the 
order of pattern presentation was randomized before 
each sweep. The networks were trained until they 
converged (generated a hit for every pattern), where a 
hit was defined as response of .99 or higher when the 
desired response was 1, or .01 or lower when the 
desired response was 0. All ANN’s were able to 
differentiate between ERP types. The first ANN 
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(corresponding to the electrode FT8) converged after 3,640 sweeps; 
the second (corresponding to the electrode T8) after 2,263 sweeps, 
and the third (corresponding to the electrode TP8) after 2,828 
sweeps. The prediction accuracy of each ANN was evaluated by 
exposing each network to the 10 test patterns. Because of the small 
number of testing patterns, stringent criteria identical to those used 
during training were employed. The first network (FT8) generalized 
to 80% of the new test patterns (3/5 CR’s, 5/5 hits); the second (T8), 
to 90% (4/5 CR’s, 5/5 hits); and the third (TP8), generalized to 80% 
(3/5 CR’s, 5/5 hits). 

To understand how the ANN’s discriminated between hits 
and CR’s, the activities of each hidden unit to each individual input 
pattern were examined. Alone, each unit was a poor discriminator 
of ERP type. However, when the activities of all three units were 
examined simultaneously, it was possible to see how discrimination 
was achieved. As can be seen in the scatterplots of hidden unit 
activity in Figure 3, the ANN’s were able to classify ERP’s by 
representing inputs in 3-D space that can be divided by a plane. 
Inputs representing hits fall on one side of this hypothetical plane; 
inputs corresponding to CR’s fall on the other side.  

Figure 3 demonstrates that hidden unit activity 
discriminates the two pattern types. Hidden unit activity is a 
nonlinear function of net input, which in this study is the sum of the 
signals traveling from the input units through the weighted 
connections to the hidden unit. In order to determine if some inputs 
(timepoints) were more influential than others in classifying hits 
and CR’s, we used multiple regression to determine if a subset of 
timepoints could account for most of the variance in the input to 
each hidden unit. A linear approach seemed appropriate since no 
nonlinear transformations occur at the level of net input. This 
analysis was chosen over a straight interpretation of network 
weights because examination of connection weights revealed that 
inputs were not mapping  onto only one hidden unit. Furthermore, 
due to large differences in voltage over time, the importance of a particular input in determining hidden unit activity 
is not only based on the magnitude of its connection weight to the hidden unit, but also on its magnitude before 
weighting. Regressions with net input as the predicted variable and weighted inputs as predictors permit the 
examination of both the connection weights and the initial values of the inputs. 

Three regressions, one for each hidden unit, were performed on each of the three networks, with net input 
as the predicted variable. Timepoints entered as predictors were chosen on the basis of their standard deviations after 
weighting by the appropriate hidden unit, the rationale being that only timepoints with fairly large variance would 
contribute significantly to hidden unit activity.  Inputs with the highest standard deviations after weighting were 
entered into each regression to yield the final regression equations.  

A summary of these regressions is shown in Table 1, which shows the timepoints entered into the 
regression for each hidden unit and each channel, as well as measures of fit. Few inputs were necessary to account 
for variance in net input (one-third of the original inputs). All had high standard deviations after weighting, having 
the top third of all standard deviations for their respective hidden unit. There is also similarity between the 
timepoints entered, both within and across channels. These timepoints cover the entire range of the 500ms epoch; 
however, Table 1 shows some global characteristics of these inputs. Inputs between 100-200ms, as well as those 
between 400-500ms, appear to dominate each regression, with very few timepoints lying between 300-400ms. Early 
timepoints (<100ms) are also included in each regression. Additionally, timepoints between 200-300ms become 
more dominant in each solution as you move from the frontal channel (FT8) to the posterior channel (TP8). 

 
 

Figure 3. 3-D scatterplots of hidden 
unit activity for each of the ANN’s. 
Plots correspond to ANN’s trained 
on data from right temporal 
electrode sites (FT8, T8 and TP8, 
respectively). 
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4. Discussion 
 
While ANOVA was unable to distinguish between ERP’s, ANN’s were able to differentiate between ERP’s 

recorded over right temporal areas thought to be involved in the early stages of face processing. ANN’s were able to 
discriminate between ERP’s to correctly recognized old and new faces and generalized well to new test cases. Due 
to the small number of testing patterns, generalizations beyond this particular data set must be made cautiously. 
However, results suggest that memory-related activity is represented in early latency ERP’s from temporal areas. 
This information may be in the form of higher-order voltage/time relationships that cannot be consistently detected 
with linear methods. The success of the ANN’s was not particularly surprising: ANN’s have been used to 
differentiate between ERP’s produced by individuals with brain pathology and controls [e.g., 20, 21, 23].  This study 
provides evidence that ANN’s can also be useful in differentiating between cognitive states.  
 
Table 1. Timepoints identified as predictors of net input for each hidden unit of each network. Numbers in the table 
represent the input number, and r and R2 values for each regression; time is indicated along to bottom of the table. 

 
One reason for the inconsistencies between previous studies could be that early memory effects recruit 

relatively small cortical areas whose location and activity vary across individuals. This sample dependent variability 
could obstruct the detection of mean differences. ANN’s, on the other hand, can distinguish between groups with 
overlapping distributions and variances [20]  and classification occurs by comparing the entire timecourse of an ERP 
against those which belong to known types, without the aid of any a priori models.  Effects in previous studies may 
also have been attenuated, either by virtue of their cortical generators or by the use of mastoid references. Since 
ANN’s can tolerate noisy, incomplete data, they should be more robust to signal attenuation, as evidenced by the 
successful training of ANN’s in this study despite the use of mastoid references. 

Examination of hidden unit activity revealed that the ANN’s were able to differentiate between hits and 
CR’s by transforming inputs into three-dimensional pattern space. Furthermore, timepoints that could account for a 
significant amount of variability in the net input to each hidden unit had high variability after weighting. This 
suggests that standard deviation after weighting could be useful for the interpretation of trained networks.  

Timepoints identified as predictors of net input via multiple regression were surprisingly consistent 
between and within channels, but were not circumscribed to any particular epoch, suggesting that voltage values 
over the entire timecourse were necessary for correct classification. However, Table 1 shows an almost bimodal 
distribution of these timepoints, with inputs between 100-300ms and 400-500ms dominating each solution, as if the 
ANN’s were detecting two features in the data. The first feature (100-300ms) may be a memory effect 
corresponding to the N200 complex, while the second feature (400-500ms) may be the onset of the parietal effect, 
which was prominent after 500ms. Further examination of this first epoch is warranted; in particular, it would be 
interesting to see if an ANN can be trained to discriminate between hits and CR’s when presented with data from the 
first 300ms after face presentation. While the second feature may be the onset of the parietal effect [see 2-7] and 
could be interpreted negatively, these results are actually quite heartening at this preliminary stage, as they do 
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provide some validation for network interpretation. The fact that the ANN’s could detect this regularity before it 
became statistically significant is one reason to be optimistic about the use of ANN’s for ERP analysis.  

An interesting result of the regressions was the predominance of adjacent timepoints in their solutions. The 
fact that these timepoints were prominent in each solution was surprising given that adjacent timepoints should be 
highly correlated and therefore should not contribute much unique variance before weighting. The inclusion of 
adjacent timepoints as predictors in each regression, particularly between 100-300ms and 400-500ms, could signify 
that the ANN’s are picking up differences in the onset latencies of both early and late ERP components. This 
suggestion can only be confirmed through topographic analysis of these epochs. 

The purpose of this study was to extend the ERP literature by re-examining ERP memory effects with a 
different analytic tool, ANN’s. Much remains to be revealed about how ANN’s classify ERP’s and a framework for 
future analyses remains to be established, particularly with regard to network interpretation. In addition, future work 
must examine the ability of these networks to generalize to new cases. Nevertheless, preliminary results are 
encouraging and provide support for early face memory effects and the continued use of ANN’s in ERP analysis.  
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