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Abstract

Connectionist networks that use non-monotonic transfer
functions tend to adopt highly structured internal represen-
tations, revealed as vertical banding in density plots of in-
ternal unit activities. Recent work has shown thisbanding
to be easily analyzed allowing for the extraction of symbolic
descriptions of the solution encoded in the network. While
the banding phenomenon is well documented, the proper-
ties that give rise to this structure have never been formal-
ized. In this paper we detail the geometry that underlies
the internal unit activity clustering that banding represents.
These results distinguish the operation of non-monotonic
units from that of traditional sigmoid devices in terms of the
mechanism by which they carve up the input space.

Introduction

The vast majority of connectionist models make use of an
activation function that is monotonic with respect to its net
input; that is, the output of a processing unit is directly pro-
portional to its input. The most common examples of this
type of unit are those that use a threshold activation func-
tion function such as thesign:

f(ϑ) =
{

1 if ϑ > 0
−1 otherwise

(1)

whereϑ is the net input to the unit, and the sigmoid, for
example the logistic:

f(ϑ) =
1

1 + exp−2βϑ
, (2)

whereβ is a gain term.

Recently there has been increasing interest in connection-
ist models that make use of non-monotonic activation func-
tions such as a Gaussian or sinusoid. These networks tend
to adopt remarkably structured internal representations that
have been applied to problems of network interpretation and

rule extraction. This paper considers the question of what
gives rise to this observed structure.

We first introduce the concept of a non-monotonic process-
ing unit and provide an overview this class of network ar-
chitectures. We then turn to the issue of the internal rep-
resentations adopted by non-monotonic networks and for-
malize the geometric properties that underly this structure.
These concepts are illustrated with an easily visualized low-
dimensional example. Further, we outline a framework for
characterizing the classification mechanism of processing
units, allowing us to better contrast the mechanism by which
the input space is carved up by units using the various acti-
vation functions to be discussed. We conclude with a brief
discussion of these results and indicate how they relate to
current research on non-monotonic processors.

Non-monotonic Processing Units

When considering the behaviour of connectionist processing
units there are a number of parameters that are of interest.
One fundamental property is the activation function used to
map inputs to output.

We can distinguish between processors for which output is
proportional to net input, such as those above, from those
that are sensitive to only a particular range of values. Ballard
refers to the former type of unit as anintegration device,
whereas the latter he terms avalue unit[1]. In the present
context we will refer to any unit for which unit activity is
not proportional to its net input asnon-monotonic.

Dawson and Schopflocher have developed a connectionist
architecture based on the concept of a value unit [5]. A
network of value unitsis a feed-forward multi-layer percep-
tron in which processing elements use a Gaussian activation
function,

f(ϑ) = e−πϑ
2
. (3)



where the net input functionϑ is the Euclidean inner prod-
uct. The graph of equation3 is pictured in Figure1—note
that the range of the function is the interval(0, 1], and the
maximum value occurs whenϑ = 0.
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Figure 1. The value unit activation function

This architecture was studied empirically for its suitability
as a pattern classification system, and it was demonstrated
that for a wide range of problems, the non-monotonic activa-
tion function both reduced the time required to learn to solve
a given problem and decreased the size of the resulting net-
work. Similar results have been reported for networks that
use the periodic activation function,

f(ϑ) = sin(ϑ), (4)

which is pictured in Figure2 [7].
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Figure 2. A periodic activation function

Other work in this area has similarly concentrated on em-
pirical comparisons between multi-layer perceptrons whose
internal processing units used either a sigmoidal or various
non-monotonic activation functions [6, 8]. In any case, little
has been done to develop more formal distinctions between
these two types of architecture. It is this issue that we turn
to now.

Internal Representation

In what follows, we consider the nature of the internal repre-
sentations as formed by various types of connectionist pro-
cessing units. We generally develop these results in terms
of activation functions that generate outputs in the interval
(0, 1); however, most of these concepts generalize to other
bounded ranges.

Sigmoid Units

In terms of pattern classification, a sigmoid unit can be
thought of as partitioning the input space into two regions.
All input patterns for which the net input is below a thresh-
old value produces a low output, often0 or−1, and all those

with a net input that is above a threshold value produces a
high output, typically1. Where the net input is given by the
Euclidean inner product (ignoring bias), this partition is de-
fined by a hyperplane through the origin orthogonal to the
weight vector as depicted in Figure3.
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Figure 3. Linear partition induced by sigmoid unit

Banding in Non-monotonic Units

Recent work has studied the highly structured internal repre-
sentations that the internal units in non-monotonic networks
tend to adopt. When the activation values of internal units
in trained networks are graphed in density plots (unit acti-
vation in response to each pattern in the training set plotted
against a random component in order to spread the graph
vertically), they tend to cluster into bands. Thisbandinghas
been shown to be easily analyzed allowing for the extrac-
tion of symbolic descriptions of the solution encoded in the
network [2, 3, 7].
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Figure 4. Banding in a non-monotonic unit

While banding has been applied successfully to the problem
of extracting symbolic descriptions of network solutions, the
properties underlying this phenomenon have not been well
understood to this point. The next section turns to this issue,
providing a geometric account of the internal structure that
is reflected by banding.

The Geometry of Banding

Similar to the decision boundary defined by a sigmoid unit,
banding is a consequence of the spatial orientation of the
vector of weights into a given processing element with re-
spect to the input space. Since all input vectors that produce
the same net input produce the same output, and thus belong
to the same band, we initially consider the net input to a unit
rather than its transformed output for convenience.

Let ~w be the vector of weights into a unit for which banding
is evident and letA be the set of all input vectors. A band
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whose inverse under the activation function corresponds to
a net input ofϑ are those that satisfy

{~a ∈ A | ~a · ~w = ϑ} (5)

where net input is computed as the Euclidean inner prod-
uct. The geometric interpretation of this expression is thus
a set of input patterns lying in an affine hyperplane. We can
be more specific than this however. Consider the following
lemma (En denotes the Euclidean n-dimensional space):

Lemma 1 Given vector~w ∈ En and constantκ, then∀~u ∈
En, ~u · ~w = κ ⇐⇒ proj~w~u = κ

Proof: The proof of this lemma is a straightforward applica-
tion of the projection theorem. Let~w 6= ~0 and~u be vectors
such that~u · ~w = κ.

~u · ~w = κ (6)

=⇒ (proj~w~u+ (~u− proj~w~u)) · ~w = κ (7)

=⇒ proj~w~u · ~w = κ. (8)

The necessity of the lemma follows similarly�.

This is to say that given a reference vector~w, all vectors~u
for which the Euclidean inner product with~w is equal have
the same projection onto~w. Where this reference vector is
the weight vector associated with a processing unit, we find
that the set of points defined by Equation5 lie in an affine
hyperplane perpendicular to the weight vector, located a dis-
tance of||proj~w~u|| from the origin. The graphical interpre-
tation of this forE2 is depicted in Figure5

proj u iw

u1

u2

...

x

y

w

Figure 5. Graphical interpretation of Lemma 1 in E2

Although this result is derived in terms of net input, we are
now in a position to consider what effect a particular acti-
vation function might have. For Gaussian activated units, a
given band (with the exception of the band at the maximum
activation) corresponds to input patterns lying in parallel hy-
perplanes, perpendicular to the weight vector, equidistant
from the origin. This is a result of the symmetric activation
function mapping net inputs of equal magnitude but oppo-
site sign to the same output value. Similarly, it should now

be clear that for periodic units a band reflects input patterns
in an infinite set of parallel hyperplanes perpendicular to the
weight vector separated by a distance proportional to the pe-
riod of the function.

To illustrate these concepts, it is instructive to consider a
low dimensional problem for which the network solution is
easily visualized in terms of the geometry of the input space.

Example: 3-Parity

Even parity is a problem in which a network must learn to
output a 1 when an odd number of inputs are1, and0 other-
wise. In this particular example, we consider 3-bit parity, so
the inputs to the network are three binary values. Geomet-
rically, the input space for the 3-parity problem is a cube in
3-dimensional space making it an ideal problem with which
to visualize the network solution.

The solution presented here is a typical one arrived at by a
feed-forwardnetwork of value units, using the Gaussian ac-
tivation function given by Equation3. Network architecture
consisted of3 input units,1 internal unit and1 output unit,
and connectivity existed between all units in adjacent layers.
After training, a jittered density plot for the single internal
unit is generated, and appears in Figure6. With only 8 input
patterns, there are only8 data points on the jittered density
plot, however there are still clearly3 bands visible. These
bands are summarized in Table1.

Figure 6. Density plot for 3-parity network

Mean activity Number of patterns Output

0.05 1 0

0.50 4 1

1.00 3 0

Table 1. Summary of bands in Figure6

Figure7 depicts the input space of the 3-parity problem as a
cube in which white vertices indicate patterns that are asso-
ciated with an output of1, whereas black vertices are those
that produce an output of0 from the network. The weight
vector on the inputs to this unit,~w = (−0.47, 0.47,−0.47),
is also shown. This illustrates how the unit orients on the
input space such that related points fall into planes perpen-
dicular to ~w.

PlaneB is the plane orthogonal to the weight vector, result-
ing in a net input of0. This value produces maximum activa-
tion from the value unit activation function and the unit out-
puts a1 in response to all of these patters corresponding to
the band with mean activation1.00. PlaneD is sufficiently
distant from the origin to produce a large negative net input
and thus a low activity in the unit—this is the lone point in
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Figure 7. Geometry of 3-parity solution

the band with mean activity of0.05. PlanesA andC are
equally distant from the origin, thus produce net inputs of
equal magnitude, but opposite sign. Due to the symmetry of
the Gaussian activation function, these two planes collapse
into the single band with mean activity0.50.

The correct classification is performed by the output unit
with the use of bias to decrease the net input such that the
band at0.5 generates a net input of0, thus outputting a1 for
these 4 patterns, whereas the patterns producing activities
(bands) at0.05 and1.0 generate net inputs sufficiently far
from 0 to produce near-0 activation in the output unit. This
correctly classifies all patterns with a singly unit.

This simple example graphically demonstrates exactly how
the geometry of hyperplanes perpendicular to the weight
vector into a unit intersecting patterns in the input space re-
veals itself in the jittered density plots of non-monotonic
units. Given this new understanding of internal representa-
tion in non-monotonic processing units, we are in a position
to develop a framework with which to describe a unit’s pat-
tern classification properties in these terms.

A Classification Framework

In this section, we present a framework for describing the
manner in which units carve up their input space based on
their activation function. This serves to provide a common
language with which to visualize and contrast the classifica-
tion properties of both monotonic and non-monotonic units
for which net input is calculated as the Euclidean inner prod-
uct. This framework is presented primarily to provide the
groundwork for future results; however appears here as a
natural extension of the results in the preceding section.

For each processing unit, we will exhaustively classify its
input space by identifying 1) the pattern or patterns to which

the unit is maximally sensitive, which we will term thetrig-
ger featureor trigger plane; 2) the region to which a unit
is not sensitive at all (i.e. inputs producing zero, or near
zero, activity), which will be termed the0-region; and 3) the
regions bounded by 1 and 2 in which a unit must impose
some representation in order to perform classification tasks
as they produce non-zero activities. This last region will be
referred to as thebanding region, as it will contain the pat-
terns that are candidates for organization into hyperplanes
that will appear as banding in density plots of unit activities
in non-monotonic networks.

In what follows,A is the set of all potential input patterns to
a unit, ~w is the vector of weights on inputs into a given unit,
f is the activation function of the unit,ε is a threshold acti-
vation value below which a unit is considered to be inactive,
andσ is an allowed deviation from maximum output above
which a unit will still be considered maximally active.

Trigger Feature

The input, or set of inputs, to which a sigmoid unit is maxi-
mally sensitive has been referred to as atrigger feature[4].

Definition 1 The trigger feature with respect to a given
unit’s weight vector,T~w, is the pattern constructed such that
the maximum input appears where the corresponding con-
nection weight is positive, and the minimum possible input
appears where the weight is negative.

The geometric interpretation of the trigger feature is a point
in space. As it is also common to view sigmoid units as be-
ing “on” when the net input exceeds some threshold value,
and “off” otherwise. This allows us to think of the input
space being partitioned into a0-regionand1-region, agree-
ing with our existing understanding of the linear partitioning
performed by sigmoid units. Both of these conventions are
noted in Figure8 to follow.

As was noted in the case of non-monotonic units, the set of
patterns producing any given activity lie in a hyperplane.
For the specific instance of the set of patterns producing
maximum activity we will simply modify the existing ter-
minology and refer to this set as thetrigger planefor a unit.

Definition 2 Thetrigger planewith respect to a given unit’s
weight vector,T~w, is the set of patterns satisfyingf(~a · ~w) =
max{f}. This corresponds to the patterns lying in the affine
hyperplane in Equation9.

T~w = {~a ∈ A | ~a · ~w = f−1(max{f})}. (9)
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In practice banding is rarely perfectly clean, as slight error
in the spatial orientation of the weight vector is possible,
in fact possibly desirable, depending on the nature of the
problem. We can accommodate this by introducing a small
toleranceσ in maximum activation for which patterns will
still be considered to lie on the trigger plane. In this case
Equation9 becomesT~w = {~a ∈ A |~a· ~w = f−1(max{f}−
σ)}.

Note that in the case of a periodic activation function with
recurring maxima, the unit in question induces an infinite
number of trigger planes throughout the input space.

Zero Region

Definition 3 Thezero regionwith respect to a given unit’s
weight vector,0~w, contains those patterns producing activity
below a given inactivity threshold value, i.e.f(~a · ~w) < ε.
Thus,

0~w = {~a ∈ A | ~a · ~w < f−1(ε)} (10)

Note that while the sigmoid unit has a single zero region, the
symmetry of the Gaussian activation function results in two
zero regions located toward the two tails of the curve. The
notion of a zero region is only meaningful where there is
some interval of the range of the activation function which
produces negligible activity in response to values from its
domain. Since the periodic activation function does not sat-
urate anywhere in its range, within this framework we would
say that such units have no zero region.

Banding Region

Definition 4 The banding regionwith respect to a given
unit’s weight vector,0~w, contains those patterns that are
candidates for banding. This region is bounded by the zero
region and the trigger plane, giving

B~w = A− (0~w ∪ T~w) (11)

Given these definitions, this framework does not admit a
banding region for sigmoid units. This suitably mirrors
the empirical evidence that demonstrates that these types of
units do not typically exhibit banding.

Figures8, 9 and10 illustrates the concepts that have been
discussed in this section, superimposed on the graphs of
the activation functions that we have described in this pa-
per. This is particularly useful for visualizing the relative
sophistication with which these units are capable of carving
up their input space.

The 3-parity example presented earlier can now be recast in
this framework as we would now identify planeB in Fig-
ure 7 as thetrigger plane, planeD lies in the unit’szero
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Figure 8. Classification by a sigmoid activation function
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Figure 9. Classification by a Gaussian activation func-
tion
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Figure 10. Classification by a periodic activation func-
tion

regionso produces negligible activity, and since patterns in
planesA andC lie in thebanding region, they would be ex-
pected to appear as non-zero bands in a jittered density plot
for this unit.

Conclusions

This paper has shown banding to be the result of a non-
monotonic processing unit orienting itself to define parallel
sets of affine hyperplanes that intersect points in the input
space. In contrast, a sigmoid or threshold device partitions
the input space into two linearly separable regions. This un-
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derlines a fundamental difference in the way these two types
of processors compute on their input.

A geometric framework was introduced with which to de-
scribe the classification properties of non-monotonic pro-
cessing units, contrasting this with that of the well known
sigmoid or threshold devices. A unit’s response to its input
space can be completely characterized by itstrigger feature,
banding regionandzero region, if one exists. In this way we
are able to better distinguish the characteristics of the parti-
tioning of the pattern space induced by units using various
monotonic and non-monotonic activation functions.

The material introduced in this paper form the basis for cur-
rent work establishing the computation complexity of non-
monotonic networks, and placing them in context with the
already well understood sigmoid networks.
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