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Abstract

Architectural accounts of cognitive performance are important to explore because they provide the infrastructure for
algorithmic theories of cognition [Dawson, M.R.W. (1998). Understanding cognitive science. Malden, MA: Blackwell].
Three parallel distributed processing (PDP) networks were trained to generate the ‘p’, the ‘p and not-q’ and the ‘p and q’
responses, respectively, to the conditional rule used in Wason’s selection task [Wason, P.C. (1966). Reasoning. In: Foss,
B.M. (Ed.), New Horizons in Psychology, London, Penguin]. Afterward, each trained network was analyzed for the
algorithm it developed to learn the desired response to the task. Analyses of each network’s solution to the task suggested a
‘specialized’ algorithm that focused on card location. For example, if the desired response to the task was found at card 1,
then a specific set of hidden units detected the response. In addition, we did not find support that selecting the ‘p’ and ‘q’
response is less difficult than selecting the ‘p’ and ‘not-q’ response. Human studies of the selection task usually find that
participants fail to generate the latter response, whereas most easily generate the former. We discuss how our findings can be
used to (a) extend our understanding of selection task performance, (b) understand existing algorithmic theories of selection
task performance, and (c) generate new avenues of study of the selection task.  2001 Elsevier Science B.V. All rights
reserved.

1. Introduction then Q and four cards displaying instances of a p, a
not-p, a q, and a not-q. In the actual task, each card

No other task has spurred as much research into contains a letter on one side and a number on the
human reasoning as has Wason’s (1966) selection other side. Participants are instructed to test the truth
task (Evans, Newstead, & Byrne, 1993). Fig. 1 or falsity of the rule by selecting the fewest cards
illustrates the task, which involves presenting a possible from the set of four. Although participants
participant with a conditional rule in the form of If P can see only side of each card, they are told that each

card’s flip side contains information that might be
useful in testing the rule.
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models theory (1983; Johnson-Laird & Byrne, 1991)
proposes that any context that impairs participants’
ability to consider counter-examples to the selection
task’s rule will hinder logical performance. Finally,
Rips’ (1994) syntactic theory proposes that particip-
ants fail to respond correctly to the selection task
because the task calls for a sophisticated application
of mental rules that many participants either do not
have or have not yet mastered. One similarity among
the first three theories — pragmatic reasoning theory,Fig. 1. Wason’s card selection task.
social contract theory, and mental models — is that

fore, conclusively tests the rule (Garnham & Oakhill, each provides an algorithmic account of perform-
1994). Typically only 10% of participants select ance; that is, each theory specifies a procedural
cards corresponding to ‘p’ and ‘not-q’, however. description of how participants solve the selection
Most participants select either the ‘p’ alone or the ‘p’ task. Rips’ (1994) syntactic theory also provides an
and the ‘q’ (for a complete review of the selection algorithmic account but, in addition, the theory
task, the reader is referred to Evans et al., 1993). specifies an architectural account of participants’

Why do so many participants fail to respond performance — a system of productions that imple-
logically to the selection task? This is a question that ments logical routines.
has spurred numerous studies and a host of theories Rips’ (1994) theory suggests that a system of
(e.g., Cheng & Holyoak, 1985, 1989; Cosmides, productions underlies reasoning, but some critics
1989; Johnson-Laird & Byrne, 1991; Rips, 1994). have argued that his theory is unconvincing because
Unfortunately, many of these theories are algorith- it fails to reflect the inductive quality of human
mic and do not address the question of the kind of reasoning (e.g., Oaksford & Chater, 1993). For
architecture that underlies performance. Specifying example, unlike pragmatic reasoning theory, social
the architecture of cognitive performance is useful contract theory, and mental models theory, syntactic
because it anchors algorithmic theories to more theory in general ignores the role of context in
concrete descriptions of performance; ‘black box’ reasoning, and the non-monotonicity of reasoning
descriptions are precluded (Dawson, 1998). (Byrne, 1989; Evans et al., 1993). According to

Cheng and Holyoak (1985, 1989) account for some theorists, other architectures might offer more
participants’ poor performance with a pragmatic credible accounts of reasoning (e.g., Oaksford &
reasoning theory. According to the theory, particip- Chater, 1993). In particular, a connectionist architec-
ants possess domain-specific schemata that, invoked ture might be more representative of human reason-
in meaningful contexts, facilitate reasoning re- ing, as Shastri (1991) explains:
sponses. Cheng and Holyoak (1985, 1989) suggest
that participants perform poorly on the selection task Connectionism offers an extremely efficient
because it lacks a meaningful context. In support, metaphor for reasoning where inference is re-
they have empirically shown that logical responses to duced to spreading activation in a parallel
the selection task increase when the task is framed in network . . . . The connectionist approach suggests
a meaningful context, such as when participants must alternate formulations of information processing.
decide which person, among four, stands in violation Thus instead of viewing a knowledge-based sys-
of a permission rule (see Liberman and Klar, 1996, tem as a theorem prover or a production system,
for a discussion of how the permission context may one may view it as a system that performs
change the nature of the task). Cosmides’ (1989) constraint satisfaction, energy minimization, or
social contract theory proposes a similar account of evidential and probabilistic reasoning ( p. 263).
participants’ poor performance, although the domain-
specific schemata in this theory are invoked spe- Specifying the architecture of an algorithmic
cifically in response to situations involving costs and account of cognitive performance is important be-
benefits. Alternatively, Johnson-Laird’s mental cause it provides ‘‘an account of the mental program-
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ming language in which cognitive algorithms are PDP networks to extend our understanding of selec-
written’’ (Dawson, 1998, p. 159). Such an account tion task performance. First, PDP networks learn to
serves to clarify theories and to extend our under- solve tasks by means of pattern classification or
standing of the cognitive performance under study. mapping input patterns to output responses. This
For instance, we can pursue questions such as ‘‘how method of learning to solve tasks is compatible with
might domain-specific schemata be instantiated in many of the algorithmic theories of selection task
the brain?’’ or ‘‘are rules or some other operation performance, such as pragmatic reasoning theory
underlying performance?’’ To begin answering such (Cheng & Holyoak, 1985). In fact, pattern classifica-
questions, we need to explore architectural accounts tion accounts of reasoning in general have been
of reasoning alongside algorithmic accounts. Explor- proposed (e.g., Bechtel & Abrahamsen, 1991; Gobet
ing functional architectural accounts of cognitive & Simon, 1998; Goldstone & Barsalou, 1998).
performance can bring us closer to more complete Pattern classification accounts of reasoning assume
theories of cognition. that people make sense of their environment by

In this paper we explore whether a specific categorizing objects and events not only to make
connectionist or parallel distributed processing predictions about their (unseen) characteristics, but
(PDP) architecture, termed the value unit architec- also to decide upon actions in light of the categoriza-
ture, can extend our understanding of participants’ tion. For example, Bechtel and Abrahamsen (1991),
performance on the selection task. Hence, we attempt reiterating an idea proposed by Margolis (1987),
to resolve the critique we levy against theories of suggest the following view of how reasoning might
selection task performance; namely, that they are not proceed according to the pattern classification view:
linked to a functional architecture. This research is
exploratory since to our knowledge no one has The recognition of one pattern constitutes an
simulated performance on the selection task using a internal cue which, together with the external
connectionist architecture. Other investigators have cues available from outside the system, facilitates
used connectionist architectures to model other kinds yet another recognition. Thus, we work our way
of (inferential) problems but not specifically the through a complex problem by recognizing some-
selection task (e.g., Derthick, 1991; Shastri, 1991). thing, and with the help of that result, recognizing

As a general overview of the paper, we first something further. ( p. 141)
discuss why PDP networks can be used to explore an
architectural account of selection task performance. Viewing reasoning from the perspective of pattern
Second, we provide a general introduction to PDP classification complements theories such as Cheng
networks and in particular the value unit architecture, and Holyoak’s pragmatic reasoning theory (1985)
which is the specific architecture we use in the and Cosmides’ social contract theory (1989), which
present studies. Third, we illustrate how three differ- emphasize the inductive quality of reasoning.
ent value unit networks were trained to generate Another important reason for employing PDP
different responses to the selection task and how networks is that they characterize, albeit roughly, the
each network can help us understand participants’ kind of processing that occurs in the brain (Dawson,
responses to this task. Finally, we discuss the results 1998). PDP networks are considered ‘brain-like
from all three networks and their relation to existing systems’ in that they are built from inter-connected,
algorithmic accounts of performance on the selection simple processing units that can be used to classify
task. patterns. We turn now to a description of PDP

networks.

2. Why use PDP networks to explore an 2.2. A PDP network of value units
architectural account of performance on the
selection task? A PDP network is a system of inter-connected,

simple processing units that can be used to classify2.1. Pattern classification
patterns presented to it. A PDP network is usually

There are two reasons why we would want to use made up of three kinds of processing units: (a) Input
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units encode the stimulus or activity pattern that the units, and either amplifies or attenuates the signal
network will eventually classify; (b) hidden units being sent from one processing unit to another.
detect features or regularities in the input patterns A network is not given a ‘step by step’ procedure
that can be used to determine classification decisions; for solving a desired task, but, is instead trained to
and (c) output units represent the network’s response solve the task. Consider a popular supervised learn-
to the input pattern; that is, the category to which the ing procedure called the generalized delta rule
pattern is to be assigned on the basis of the features (Rumelhart, Hinton & Williams, 1986). To train a
or regularities that have been detected by the hidden network with this rule, one starts with a network (of
units. Processing units communicate by means of a pre-specified number of hidden units) that has
weighted connections. Fig. 2 provides an illustration small, randomly assigned connection weights. The
of a typical network. network is then ‘developed’ by presenting it a set of

In most cases, a processing unit carries out three training patterns, each of which is associated with a
central functions: First, a processing unit computes desired response. To train a network to classify a
the net input or the total signal that it receives from pattern correctly, a pattern is presented to the net-
other units. A net input function is used to carry out work’s input units, and the network generates a
this calculation. After the processing unit determines response to this stimulus using its existing con-
its net input, it transforms it into an internal level of nection weights. The network’s response is then
activity, which typically ranges between 0 and 1. The compared against the desired output (i.e., the correct
internal activity level is calculated by means of an response) and an error value is computed for each of
activation function. Finally, the processing unit the network’s output units. This error value is then
determines the signal that needs to be sent to other fed backwards through the network, and it is used to
units. This signal is created by applying an output modify connection weights in such a way that the
function to the unit’s internal activity. The most next time the pattern is presented to the network, the
common output function is the identity function, network’s output errors will be smaller. By repeating
suggesting that the signal sent out from a unit equals this procedure a large number of times for each
the unit’s internal activity. (The reader is referred to pattern in the training set, the network’s response
Dawson (1998) for a more complete explication of errors for each pattern can be reduced to near zero.
the different functions.) A weighted connection acts At the end of this procedure, the network will have a
as a communication channel between two processing very specific pattern of connectivity (in comparison

Fig. 2. Illustration of a typical PDP network, including layer of input units, hidden units, and output units.



J.P. Leighton, M.R.W. Dawson / Journal of Cognitive Systems Research 2 (2001) 207 –231 211

to its random start) and will have learned to perform the decision regions and lead to the network’s correct
the desired stimulus / response pairing (if it is pos- responses?
sible for such a pairing to be learned). At first glance it might appear uninteresting to

A number of different versions of the generalized investigate whether a PDP network learns the desired
delta rule exist, each designed to train networks input /output response to the selection task since we
whose processors have specific properties. For in- know that PDP networks, as universal Turing ma-
stance, one form of the generalized delta rule is chines, should have little difficulty learning the task
applied when a logistic equation is used as an (Dawson, 1998). Our purpose, however, is not
activation function (Rumelhart et al., 1986). A simply to see whether we can train a network to
modified version of the generalized delta rule can be solve the selection task but, more importantly, to
used to train networks of value units (Dawson & explore the algorithm or how a trained network
Schopflocher, 1992). A value unit is a processor that solves the task. The exploration is not trivial since
uses a Gaussian equation for its activation function. we cannot predict the algorithm a connectionist

network will develop to solve a task. Exploring how
2.3. Problem difficulty and a PDP network’s a trained network solves the selection task can
algorithm for problem solving extend our understanding of the task and its existing

theories. It is because of our interest in exploring
It is possible to evaluate a problem’s difficulty by how a trained network solves the task that we use the

the extent of a network’s requirements for learning to value unit architecture, whose hidden units often
solve the problem. For instance, the number of exhibit properties which render them interpretable
hidden units that a network requires to solve a (e.g., Berkeley, Dawson, Medler, Schopflocher &
problem is indicative of the problem’s difficulty Hornsby, 1995; Dawson, 1998; Dawson, Medler &
(Dawson, 1998). Hidden units allow connectionist Berkeley, 1997). Next, we train a value unit network
networks to solve linearly nonseparable problems. to generate a response that human participants
Linearly nonseparable problems are difficult to solve, commonly make to the selection task, but is incom-
compared to linearly separable problems, because plete.
they require the network to divide the pattern space
into multiple decision regions. In contrast, linearly
separable problems require the network to make a 3. Network 1: selection of the ‘p’ card
single division in the pattern space so as to create
two decision regions. Linearly nonseparable prob- The goal of the first study was to train a value unit
lems can be solved by networks that have a layer of PDP network to generate the ‘p’ card in response to
hidden units. Each hidden unit can be viewed as the selection task. We trained this first network to
creating a cut in the pattern space. Hence, the greater generate the ‘p’ card for two reasons: First, particip-
the number of hidden units required by a network to ants typically select the ‘p’ card alone in response to
solve a problem, the greater the number of decision the selection task (see Evans et al., 1993). Second,
regions or ‘cuts’ in the pattern space demanded by we wanted to train a network to generate a compara-
the task. tively simple response, the selection of only one

Later in the paper, we will show how the activity card, before training a network to generate a more
within hidden units can be analyzed and interpreted difficult response. The purpose of training this
to uncover the algorithm by which a network learns network (and others which will be described later in
to solve a particular task. Interpreting hidden unit studies 2 and 3) is to determine the algorithm by
activity informs us of the specific features that define which the network learns to generate a simple, but
the decision regions created by the network to solve incomplete response, to the task. Ultimately, we
the task. Although analyzing hidden unit activity want to examine the trained network’s algorithm to
does not necessarily inform the question of problem see what it can teach us about performance on the
or task difficulty, hidden unit activity does inform selection task and existing algorithmic theories of the
the question of how the network solved the task; that task. In the next section we discuss how we trained
is, what are the important pattern features that define the network.
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Table 13.1. Method
Binary coding of conditional rule types and cards used to train
networks and generate input patterns

3.1.1. PDP version of Wason’s selection task:
Text form Binary formnetwork architecture

When human participants are presented with the Rules:
If vowel then even number 0 0 1 0selection task, they already have a great deal of
If vowel then odd number 0 0 1 1knowledge about its components. For instance, par-
If consonant then even number 0 1 1 0

ticipants come to the task with knowledge of (a) the If consonant then odd number 0 1 1 1
connective ‘if then’, (b) different kinds of numbers If even number then vowel 1 0 0 0
(i.e., odd versus even), and (c) different letters (i.e., If even number then consonant 1 0 0 1

If odd number then vowel 1 1 0 0vowels versus consonants). In contrast, PDP net-
If odd number then consonant 1 1 0 1works do not start with this kind of knowledge. PDP

networks must first be given this preliminary in- Cards:
formation via some format that the network can A 0 0 0
process. Furthermore, the responses or behavior the E 0 0 1

J 0 1 0network generates at the end of training should be
K 0 1 1broad or general enough (i.e., applicable across a
4 1 0 0

large set of distinct patterns) to be of interest to 6 1 0 1
psychologists. Hence, we needed to first find a way 5 1 1 0
to encode the task for the network and, second, to 7 1 1 1

create a sufficient number of input stimuli so that the
network could be trained on a large number of
patterns. their categories in a form that is easily available to

To solve these issues, a binary code was de- the network. As illustrated in Table 1, each card is
veloped that allowed a representation of both the represented with three input units in such a way that
task’s conditional rule and the four cards using 16 the first two input units represent the card’s category,
input units. Four inputs units were used to represent and the third input represents the card’s exemplar of
the rule. The first two input units reflected the that category. For instance, the first two zeros in the
antecedent of the rule, whereas the last two units code ‘000’ indicate that this string is a ‘vowel’ while
reflected the consequent of the rule (see Table 1). the third zero indicates that, specifically, this string is

1Four sets of three input units were then used to a letter ‘A.’
represent the card categories. The first two input

1units of each set were used to represent the card’s Although the encoding of ‘vowel’ (i.e., 00) is on the surface
more similar to the encoding of ‘even number’ (i.e., 10) than tocategory membership, whereas the last unit of each
‘odd number’ (i.e., 11), this surface similarity should not bias theset was used to represent its specific instance. Using
network’s solution. The reason for this is that our training set

this encoding scheme, a training set was developed included all possible permutations of rules and associated solu-
that included eight different conditional rules and tions; hence, that the rules and ‘cards’ share some surface
eight different instances of card categories (two similarity among a portion of the patterns is offset by the lack of

similarity shared among the remaining portion of patterns. Forvowels, two consonants, two even numbers, and two
example, suppose the network’s task is to learn to select the ‘p’odd numbers). These card instances were crossed
(antecedent) and the ‘q’ (consequent) in response to the rules it is

with 24 unique orders generated from assembling presented (see study 3 in this paper). In response to one form of
four ‘cards’ in all possible combinations. This latter the rule, ‘‘if vowel then even’’ (0010), the network would learn to
step led to 384 unique orders of card values, which select the vowel card (00) and the even card (10). In response to

another rule, ‘‘if vowel then odd’’ (0011), the network wouldwere then crossed with each of the eight rules to
learn to select the vowel card (00) and the odd card (11). Hence,produce a final training set of 3072 input patterns.
any surface similarity between some rules and some cards should

We believe that our encoding scheme captures the not bias the network’s solution of the task because the network
underlying structure of the selection task. First, our learns to solve the task by responding to the full set of rules and
binary coding scheme distinguishes exemplars from cards in the training set.
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Second, because the network was examined after units, one corresponding to each card. The network
it was presented a large number of training patterns, was trained to respond by turning ‘on’ one of its four
it had the opportunity to determine for itself the output units. For example, output unit 1 turned ‘on’
underlying nature of the task. For example, all of the (i.e., was activated to a value of 1) if card 1 held the
networks that we trained learned to ignore the last desired response (i.e., affirmed the antecedent of the
‘bit’ of the encoded cards, and instead learned to rule), but turned ‘off’ if card 1 did not hold this
select cards based on the first two bits (i.e., cate- response. Only one output unit was activated in
gory). This is exactly what human participants are response to an input pattern because, for network 1,
expected to distinguish when they are presented with the desired response involved only the selection of
the selection task; they automatically focus on card the ‘p’ card. After the network learned the solution,
category as opposed to card instance. we examined this ‘mature’ network for how it solved

As shown in Fig. 3, network 1 required three the task.
hidden units to learn the task. This was because pilot A mature network responds accurately and reliably
simulations revealed that three hidden units was the to a complete set of training patterns. In this study,
minimum number of hidden units required for the reliability of response required that (a) the network
network to converge (i.e., to learn the desired be able to identify the presented rule, (b) the network
mapping between input pattern and output response). have some representation that assigned each input
If fewer than three hidden units were used, then the symbol to a more abstract category (e.g., differentiat-
network was unable to generate the desired response ing between ‘vowel’ and ‘odd number’), and (c) the
to every pattern in the training set. We used the network have some representation of the ‘content’ of
minimum number of hidden units to study the the presented rule, such that its output would indicate
network’s solution of the problem (and did not use what could be done to test the validity of the rule.
more hidden units) because it has been argued that We believe that network performance consistent with
this kind of network is most likely to produce an these three requirements for such a large number of
internal structure that can be tractably interpreted different patterns reflecting the selection task has
(e.g., Berkeley et al., 1995). developed sufficient abilities to be of psychological

Fig. 3 also shows that the network had four output interest. In short, such a network could be used to

Fig. 3. Illustration of the PDP network trained to generate the card affirming the antecedent of the conditional rule (i.e., the ‘p’ card).
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extend our understanding of selection task perform- solved the task involved wire-tapping each indi-
ance and existing algorithmic theories of the selec- vidual hidden unit for the input features it detected.
tion task. Wire-tapping is one procedure that can be used to

determine how PDP networks, in particular value
3.1.2. Training unit networks, solve problems (e.g., Dawson, 1998;

Network 1 was trained using Dawson and Schop- Moorehead, Haig, & Clement, 1989). Wiretapping
flocher’s (1992) modification of Rumelhart et al.’s involves recording the responses of the hidden units
(1986) generalized delta rule. The network was to the patterns in the training set. After the network
trained with a learning rate of 0.001 and a momen- is trained on a set of input patterns, the patterns are
tum of zero. Connection weights and unit biases (i.e., presented again to the network while their activities
the mean of the Gaussian) were randomly selected in individual hidden units are recorded. The recorded
from the range of 2 1.0 to 1 1.0. The weights and activities are plotted and examined for meaningful
biases were updated after the presentation of each configurations. The configurations provide clues as
pattern. The order of pattern presentation was ran- to how the network is solving the task; that is, the
domized during each epoch (an epoch is defined as configurations indicate which patterns fall into each
the presentation of all patterns in the training set). of the decision regions created by the network to
This was done to ensure that the network’s learning solve the task.
of the task was contingent on the specific input
patterns and not on their specific sequence of pre- 3.2.1. Jittered density plots
sentation. Jittered density plots of each hidden unit were

The network was trained until it generated a ‘hit’ constructed subsequent to wiretapping, as shown in
in response to every pattern. A desired response or Fig. 4. A jittered density plot illustrates the dis-
‘hit’ consisted of an activation of 0.9 or higher in the tribution of activation values produced in a single
output unit corresponding to the ‘p’ card along with hidden unit of a mature network following a pre-
activations of 0.1 or lower in output units corre- sentation of a full set of input patterns. A single dot
sponding to cards not affirming the antecedent of the in the plot represents the activation that one input
rule. The network converged to a solution to this pattern produces in a hidden unit. Hence, one plot
problem after 83 epochs. Following training, network illustrates as many dots as there are input patterns.
performance on the selection task was considered The x-axis on the jittered density plot ranges from 0
comparable to human performance in so far as the to 1 and shows the range of activation values
network generated a reliable response to specific generated by the input pattern set. Dots are also
input. That is, the network generated the ‘p’ card in randomly jittered along the y-axis to make them as
response to the rule in the task, which is consistent discernible as possible.
with a pattern typically shown by human particip- Jittered density plots of value unit networks are
ants. frequently highly structured or ‘banded.’ The distinct

bands represent groups of input patterns that share
3.2. Results: definite features of hidden units similar features and produce similar activations in a

hidden unit. By examining the features that fall into
The purpose of this first study was to interpret the each band, it is possible to identify the features that

method by which network 1 learned to solve the the network used to solve a problem. From the
task; that is, learned to select the ‘p’ card in response presence of the bands, we know that hidden units are
to the conditional rule. Interpreting network 1 in- reliably detecting specific input features in solving
volved examining each of the network’s hidden units the task (Berkeley et al., 1995). Although bands
for the input features it detected. Once the relation- provide information about the features used in
ship between hidden units and input features was solving a problem, the bands do not necessarily
known, it was then possible to determine how the provide information about the problem’s complexity.
network solved the task. The number of hidden units is a better indicator of

The first step to understanding how the network task complexity. While the number of hidden units
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Fig. 4. Jittered density plots for each of the three hidden value units in network 1.

required by a network to solve a task indicates the example, a perfectly positive correlation between
number of decision regions in the pattern space, input units 6 and 7 indicates that these units always
bands reflect the features that characterize the deci- assume the same value; if input unit 6 has a value of
sion regions. As shown in Fig. 4, all three hidden 1.0, then so does input unit 7. In contrast, a perfectly
units in network 1 exhibited a high degree of negative correlation between a pair of input units
banding. suggests that whenever one input unit is 1.0, the

With the aid of descriptive statistics, it is possible other is 0.0 and vice versa. Network 1’s hidden units
to identify the specific features that cluster into each detected only definite binary features. A description
band and, moreover, how the network uses this of the definite binary features detected by each
configuration or ‘carving of the input space’ to solve hidden unit in network 1 is presented in Table 2.
a task. By calculating the Pearson product-moment
correlation among the patterns in a band, it is 3.2.2. Interpretation of definite binary features
possible to learn if a hidden unit is detecting definite An inspection of Table 2 suggests that network 1
binary features. A definite binary feature indicates a solved the task by detecting binary features repre-
perfectly reliable correlation between input units. For senting rules and specific cards. First, although each

hidden unit detected all eight rules, each hidden unit
Table 2 detected a specific card. For example, notice that
Definite features for bands from hidden units of network 1 hidden unit 0 was highly activated by patterns (i.e.,

aHidden Band Definite features n band C in Table 2) whose definite features showed
unit label input units 10 and 11 sharing a correlation of 1.0

with input units 0 and 1, respectively. Recall that0 A I0 ± I2, I0 ± I10, I2 5 I10 1152
0 B I0 ± I2, I1 ± I11 1152 input units 10 and 11 represent card 3 values,
0 C I0 ± I2, I0 5 I10, I1 5 I11, 768 whereas input units 0 and 1 represent the antecedent

I2 ± I10 of the rule. In other words, hidden unit 0 was highly
1 A I0 ± I2, I0 ± I7, I2 5 I7 1152

activated when the desired response, ‘p’, was located1 B I0 ± I2, I1 ± I8 1152
at card 3. Notice also that hidden unit 0 was1 C I0 ± I2, I0 5 I7, I1 5 I8 768

I2 ± I7 moderately activated by patterns (i.e., bands A and
2 A I0 ± I2, I0 ± I4, I2 5 I4 1152 B) whose definite features showed input units 10 and
2 B I0 ± I2, I1 ± I5 1152 11 sharing a correlation of 2 1.0 with input units 0
2 C I0 ± I2, I0 5 I4, I1 5 I5 768

and 1, respectively. In other words, hidden unit 0I2 ± I4
was not highly activated when the value at card 3

‘ ± ’ indicates a perfectly negative correlation between input
failed to match the antecedent of the rule.units; ‘ 5 ’ indicates a perfectly positive correlation between input

The same analysis can be applied to hidden units 1units.
a n, number of patterns falling in each band. and 2. For example, hidden unit 1 detected desired



216 J.P. Leighton, M.R.W. Dawson / Journal of Cognitive Systems Research 2 (2001) 207 –231

responses at card 2 (i.e., inputs units 7 through 9), generally. Cosmides’ (1989) social contract theory
and hidden unit 2 detected desired responses at card and Johnson-Laird’s mental models theory (1983)
1 (i.e., input units 4 through 6). Although card 4 are also unclear about the influence the evidence
values were not directly detected by any of the might have on participants’ performance. All three
hidden units, card 4 values were detected indirectly theories focus primarily on the nature of the rule and
by all three hidden units. In value unit architectures, its associated context. In contrast, according to Rips’
it is possible for a zero signal to moderate high (1994) syntactic theory, the nature of the evidence
activity or a ‘1’ response if both the ‘bias’ of the should have little influence on performance since
architecture is equal to zero and the signal being sent mental rules operate on the syntax of the selection
is equal to zero. In other words, in a state where task rule. In the next study, we trained a network to
none of the three hidden units were activated (i.e., solve the task by selecting the ‘p’ and ‘not-q’ cards.
the desired response was not found at card 1, 2 or 3), This is a response rarely exhibited by human par-
this state activated output unit or card 4 (i.e., input ticipants.
units 13 through 15).

3.3. Discussion
4. Network 2: selection of the ‘p’ card and the

Network 1 learned to select the ‘p’ card in ‘not-q’ card
response to the conditional rule by having each
hidden unit detect values at specific card locations. 4.1. Method
This ‘specialized’ hidden unit algorithm did not
discriminate among the rules used in the task since 4.1.1. Network architecture
all three hidden units detected all rules. Instead, the Network 2 was trained under the same method
specialized algorithm discriminated among card loca- used to train network 1 — identical input encoding,
tions to solve the task. We speculate that the net- training patterns, and output units were used. This
work’s specific focus on card location points to the time, however, two output units instead of one were
importance of the evidence in the selection task. The designed to turn ‘on’ in response to every input
cards in the selection task illustrate the evidence with pattern since the solution of the task involved the
which to test the rule. Although few existing theories selection of two ‘cards’. As shown in Fig. 5, network
of selection task performance focus on the evidence, 2 required eight hidden units instead of three to learn
some investigators have proposed that the kind of the task. Pilot simulations revealed that the network
evidence available to participants plays an important could not learn to generate the desired mapping from
role in how participants choose to test a rule (e.g., inputs to outputs with fewer than eight hidden units
Klayman & Ha, 1987; Liberman & Klar, 1996). For when the network was required to select two ‘cards.’
example, Liberman & Klar (1996) suggested that if
participants perceive the evidence needed to test a
hypothesis as atypical, they might forego using the 4.1.2. Training
atypical evidence and choose to test the hypothesis Network 2 was trained similarly to network 1 with
using more conventional evidence. The results ob- the exception that network 2 was trained to select
tained from network 1 suggest that the evidence in two responses instead of one. Because network 2
the selection task might play an important role in selected two responses, it needed to learn to dis-
participants’ responses. tinguish between propositions — ‘p’ and ‘not-q’ —

At this time, it is unclear how the findings in its responses. We did not indicate to the network
obtained from network 1 support or challenge exist- before its training which values represented ‘p’ and
ing theories of selection task performance. For which values represented ‘not-q’ because learning to
example, Cheng and Holyoak’s (1985, 1989) prag- make this distinction is an integral part of learning
matic reasoning theory is vague about how particip- the task. When human beings solve the selection
ants might view the evidence or its role in reasoning task, they approach the task already knowing which
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Fig. 5. Illustration of the PDP network trained to generate both the card affirming the antecedent and the card negating the consequent of the
conditional rule (i.e., the ‘p’ and the ‘not-q’ cards).

values represent ‘p’ and which values represent ‘not- the selection task; they automatically focus on card
q,’ but at some point in their learning history human category as opposed to card instance.
beings have had to learn to make the distinction
between propositions. Learning to distinguish propo- 4.1.3. Results
sitions was part of the network’s training on the task. Network 2 was analyzed following the same

As with network 1, prior to training, the network’s approach used to analyze network 1. As illustrated in
connection weights were randomly set to values Figs. 6 and 7, jittered density plots of each of the
between 2 1.0 and 1 1.0, while unit biases were set eight hidden units in network 2 revealed a high
to 0.1. The learning rate was 0.001 and no momen- degree of banding. Such pronounced banding sug-
tum was used. At the end of training, the network gested that the network’s solution to the task in-
generated a ‘hit’ in response to every pattern. A volved the detection of definite features. An exami-
desired response or ‘hit’ consisted of an activation of nation of the plots, furthermore, suggested that pairs
0.9 or higher in the output units corresponding to the of hidden units had similar patterns of banding; for
desired response (i.e., ‘p’ or ‘not-q’). An activation example, hidden units 0 and 6, hidden units 1 and 4,
of 0.1 or lower characterized outputs units corre- hidden units 2 and 5, and hidden units 3 and 7. The
sponding to other responses. The network learned to visual similarity observed in the plots between pairs
generate the desired response to all patterns after 414 of hidden units was supported when we ran a
epochs. correlation among hidden unit activity. In particular,

In addition, because the network was examined we discovered that the activity of hidden units 3 and
after it was presented a large number of training 7 shared a correlation of 2 0.99 when a desired
patterns, it had the opportunity to determine for itself response was located at card 1 (see Tables 3 and 4);
the underlying nature of the task. For example, all of hidden units 0 and 6 shared a correlation of 0.99
the networks that we trained learned to ignore the when a desired response was located at card 2;
last ‘bit’ of the encoded cards, and instead learned to hidden units 2 and 5 shared a correlation of 1 when a
select cards based on the first two bits (i.e., cate- desired response was located at card 3; and hidden
gory). This is exactly what human participants are units 1 and 4 shared a correlation of 0.81 when a
expected to distinguish when they are presented with desired response was located at card 4. Strong



218 J.P. Leighton, M.R.W. Dawson / Journal of Cognitive Systems Research 2 (2001) 207 –231

Fig. 6. Jittered density plots for the first set of four hidden value units used in network 2.

Fig. 7. Jittered density plots for the second set of four hidden value units used in network 2.

correlations between pairs of hidden units disap- through 4 represent the rule of the task, the first two
peared when undesired responses were located at bits represent the antecedent of the rule while the last
their respective card locations. two bits represent the consequent. Hidden unit 2 was

An examination of the definite features detected also highly activated by patterns that had a desired
by network 2’s hidden units suggested a ‘specialized’ response (in relation to the rule) located at card 3.
algorithm similar to that found for network 1. Tables This means that input patterns that had a desired
5–8 show the exhaustive list of definite features that response — ‘p’ or ‘not-q’ — located at card 3 highly
all eight hidden units detected. To illustrate network activated hidden unit 2.
2’s algorithm, we will focus on hidden unit 2 (see Hidden unit 2’s activity was highly correlated with
Table 7). Although it would be too laborious to hidden unit 5’s activity in detecting desired re-
describe here the entire list of definite features that sponses at card 3. Decoding the list of definite
hidden unit 2 detected, decoding the list indicates features detected by hidden unit 5 indicates that this
that hidden unit 2 was highly activated by patterns hidden unit was highly activated by patterns that had
whose definite features had the following values at the following values at input units 1 through 4: 0011,
input units 1 through 4: 0011, 1100, 0110, 1001, 1100, 0110, 1001, 0111, and 1000. Hidden unit 5 did
0111, 1110, 0010, 1101. Recall that input units 1 not detect any definite features associated with card
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Table 3
Correlation among hidden units when cards 1 and 2 are selected — network 2

H0 H1 H2 H3 H4 H5 H6 H7

Card 1:
H0 1
H1 0.09 1
H2 0.16 2 0.32 1
H3 0 2 0.11 0 1
H4 0.02 2 0.31 0.02 2 0.19 1
H5 0 2 0.24 2 0.28 0.154 0.18 1
H6 0.542 2 0.1 2 0.1 2 0.13 0.04 0.16 1
H7 0 0.09 0 2 0.99 0.212 0 0.144 1

Card 2:
H0 1
H1 0 1
H2 0.04 2 0.32 1
H3 2 0.16 2 0.25 2 0.21 1
H4 0.06 2 0.31 0.02 0.03 1
H5 2 0.18 2 0.24 2 0.28 0.02 0.181 1
H6 0.996 0 0.02 2 0.16 0.07 2 0.1 1
H7 0.191 2 0.11 2 0.13 2 0.34 0.197 0.105 0.21 1

Table 4
Correlation among hidden units when cards 3 and 4 are selected — network 2

H0 H1 H2 H3 H4 H5 H6 H7

Card 3:
H0 1
H1 0.09 1
H2 0 2 0.24 1
H3 0.307 2 0.25 0.03 1
H4 0.02 2 0.31 0.18 0.03 1
H5 0 2 0.24 1 0.03 0.18 1
H6 0.541 2 0.1 0.161 0.03 0.04 0.16 1
H7 2 0.1 2 0.11 0.106 2 0.34 0.196 0.105 2 0.22 1

Card 4:
H0 1
H1 2 0.1 1
H2 0.16 2 0.21 1
H3 0.309 2 0.1 2 0.21 1
H4 2 0.1 0.814 2 0.1 2 0.15 1
H5 0 0.748 2 0.28 0.03 0.224 1
H6 0.541 0.07 2 0.1 0.03 0 0.159 1
H7 2 0.1 0.173 2 0.13 2 0.34 0.163 0.106 2 0.22 1

values. In short, hidden units 2 and 5 were both 4.2. Discussion
highly activated by a large set of rules and helped to
detect responses located at card 3. Similar accounts Network 2 solved the task by means of specialized
may be made for the remaining pairs of hidden units ‘pairs’ of hidden units. In particular, hidden units 0
(see Tables 5, 6 and 8). and 6 detected desired responses located at card 2,
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Table 5
Definite features for bands from hidden units 0 and 6 of network 2

aH0- Definite features n H6- Definite features n
bands bands

A I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I7, 192 A I0 ± I2 1344
I0 ± I8, I1 5 I2, I1 ± I3, I1 5 I7,
I1 5 I8, I2 ± I3, I2 5 I7, I2 5 I8, B I0 ± I2, I1 ± I3 576
I3 ± I7, I3 ± I8, I7 5 I8

C I0 5 I1, I0 ± I2, I0 ± I3, I0 5 I7, 192
B I0 5 I1, I0 ± I2, I0 5 I3, I0 ± I7, 192 I0 ± I8, I1 ± I2, I1 ± I3, I1 5 I7,

I0 ± I8, I1 ± I2, I1 5 I3, I1 ± I7, I1 ± I8, I2 5 I3, I2 ± I7, I2 5 I8,
I1 ± I8, I2 ± I3, I2 5 I7, I2 5 I8, I3 ± I7, I3 5 I8, I7 ± I8
I3 ± I7, I3 ± I8, I7 5 I8

D I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I7, 192
C I0 ± I2, I0 5 I7, I1 ± I3 384 I0 5 I8, I1 ± I2, I1 ± I3, I1 ± I7,

I1 5 I8, I2 ± I7, I3 ± I8 I1 5 I8, I2 5 I3, I2 5 I7, I2 ± I8,
I3 5 I7, I3 ± I8, I7 ± I8

D I0 ± I2, I1 5 I3 576

E I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I7, 192 E I0 ± I1, I0 ± I2, I0 5 I3, I0 5 I7, 192
I0 5 I8, I1 ± I2, I1 ± I3, I1 ± I7, I0 5 I8, I1 5 I2, I1 ± I3, I1 ± I7,
I1 5 I8, I2 5 I3, I2 5 I7, I2 ± I8, I1 ± I8, I2 ± I3, I2 ± I7, I2 ± I8
I3 5 I7, I3 ± I8, I7 ± I8 I3 5 I7, I3 5 I8, I7 5 I8

F I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I7, 192
I0 5 I8, I1 5 I2, I1 ± I3, I1 5 I7,
I1 ± I8, I2 ± I3, I2 5 I7, I2 ± I8,
I3 ± I7, I3 5 I8, I7 ± I8

G I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I7, 192
I0 ± I8, I1 ± I2, I1 ± I3, I1 ± I7,
I1 ± I8, I2 5 I3, I2 5 I7, I2 5 I8,
I3 5 I7, I3 5 I8, I7 5 I8

H I0 ± I2, I1 5 I3 768

I I0 ± I2, I0 5 I7, I1 ± I3, I1 ± I8, 384
I2 ± I7, I3 5 I8

‘ ± ’ indicates a perfectly negative correlation between input units; ‘ 5 ’ indicates a perfectly positive correlation between input units.
a n, number of patterns falling in each band.

hidden units 1 and 4 detected desired responses about both network 1 and network 2 is that their
located at card 4, hidden units 2 and 5 detected algorithms for solving the tasks involved ‘special-
desired responses located at card 3, and hidden units ized’ hidden units detecting desired responses at
3 and 7 detected desired responses located at card 1. specific card locations.

In comparison to the task network 1 had to solve,
network 2’s task was more difficult. Whereas net-
work 1 required only three hidden units to solve its 5. Network 3: selection of the ‘p’ card and the
task, network 2 required eight hidden units to solve ‘q’ card
its task. It is not surprising that network 2 required a
greater number of hidden units to solve its task, Both networks 1 and 2 solved the task by means
however, given that it generated two responses of specialized hidden units that focused on card
instead of just the one. Nevertheless, what is striking location. That hidden units specialized to discrimi-
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nate card locations was intriguing to us because this were set to zero. The learning rate was 0.001 and no
aspect of the selection task has not been examined momentum was used. At the end of training, the
closely in the past. However, we were not only network generated a ‘hit’ in response to every
intrigued by this finding but also by the apparent pattern. A desired response or ‘hit’ consisted of an
difficulty of generating two card values instead of activation of 0.9 or higher in the output units
just one. Although we expected the selection of two corresponding to the ‘p’ and ‘q’ cards, and an
card values to be a more difficult task, we did not activation of 0.1 or lower in output units corre-
expect network 2 to need more than double the sponding to the other cards. The network learned to
hidden units required to train network 1. Recall that select the desired responses after 115 epochs of
the number of hidden units required by a network to training.
solve a task is indicative of the task’s difficulty. We
conjectured that another reason for network 2’s task
difficulty might have something to do with needing 5.2. Results
to select the ‘not-q’ response. Solving the task by
selecting the ‘not-q’ response is highly uncommon As shown in Figs. 8 and 9, jittered density plots of
for human participants; it is much more common for each of the hidden units displayed a high degree of
participants to select the ‘p’ card or both the ‘p’ and banding, which suggested that network 3’s solution
‘q’ cards (Evans et al., 1993). involved the detection of definite features. An in-

We tested our conjecture by training a third spection of the jittered density plots indicated that
network to select both the ‘p’ and the ‘q’ cards. In some hidden units were detecting similar definite
this way, we hold constant the number of cards the features. For example, four out of the eight hidden
network must select in responding to the task, while units (i.e., hidden units 0, 2, 4, and 6) had similar
at the same time testing to see if selecting the ‘q’ jittered density plots. Tables 9 and 10 show the
response is easier to learn than the ‘not-q’ response. correlations among the hidden unit activity levels.
Training a third network to select the ‘p’ and ‘q’ also From the tables, we see that the activity levels of
served as a further test of the algorithms found for both hidden units 3 and 4 and hidden units 5 and 7
both networks 1 and 2. correlated 0.99 when a desired response was located

at card 1. In contrast, when a desired response was
located at card 2, hidden units 0 and 4 shared a

5.1. Method
correlation of 0.99. Moreover, when a desired re-
sponse was located at card 3, hidden units 4 and 6

5.1.1. Network architecture
shared a correlation of 0.99, and when a desired

The same method used to train both networks 1
response was located at card 4, hidden unit 2 and 4

and 2 was used to train network 3. As with network
shared a correlation of 0.99. Unlike network 2,

2, two output units were designed to turn ‘on’ in
detecting a desired response at card 1 required four

response to every input pattern since the desired
hidden units, while detecting desired responses at

response involved the selection of two cards. Sur-
other card locations required only two. In addition,

prisingly, we found that network 3 also required
hidden unit 4 was involved in all response selections.

eight hidden units to converge, which is the same
A closer analysis of how network 3 solved the task

number of hidden units required by network 2. We
revealed several interesting results. First, the hidden

had expected network 3 to require fewer hidden units
units in network 3 did not detect as many definite

based on our prediction that selecting the ‘q’ card
features in solving the task as we found for network

might be more easily learned than selecting the
2. For example, notice that network 3’s jittered

‘not-q’ card.
density plots did not exhibit as many individual
bands for each hidden unit as we observed for

5.1.2. Training network 2. Second, and more specifically, an inspec-
As with networks 1 and 2, prior to training, tion of the definite features detected by hidden unit 4

network 3’s connection weights were randomly set to revealed a correspondence to the four input units
values between 2 1.0 to 1 1.0, while its unit biases used to represent the rule in the task. Table 13 shows
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Table 6
Definite features for bands from hidden units 1 and 4 of network 2

aH1- Definite features n H4- Definite features n
bands bands

A I0 ± I2, I1 ± I14 960 A I0 5 I1, I0 ± I2, I0 ± I13, I0 5 I14, 384
I1 ± I2, I1 ± I13, I1 5 I14, I2 5 I13,

B I0 ± I1, I0 ± I2, I0 ± I3, I1 5 I2, 384 I2 ± I14, I13 ± I14
I1 5 I3, I2 5 I3, I13 5 I14

C I0 5 I1, I0 ± I2, I0 5 I3, I0 5 I13, 192 B I0 5 I1, I0 ± I2, I0 5 I3, I0 ± I13, 192
I0 ± I14, I1 ± I2, I1 5 I3, I1 ± I13, I0 ± I14, I1 ± I2, I1 5 I3, I1 ± I13,
I1 ± I4, I2 ± I3, I2 ± I13, I2 5 I14, I1 ± I14, I2 ± I3, I2 5 I13, I2 5 I14,
I3 5 I13, I3 ± I14, I13 ± I14 I3 ± I13, I3 ± I14, I13 5 I14

D I0 5 I1, I0 ± I2, I0 5 I3, I0 ± I13, 192 C I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I13, 192
I0 5 I14, I1 ± I2, I1 ± I3, I1 ± I13, I0 ± I14, I1 ± I2, I1 ± I3, I1 ± I13,
I1 5 I14, I2 5 I3, I2 5 I13, I2 ± I14, I1 ± I14, I2 5 I3, I2 5 I13, I2 5 I14,
I3 5 I13, I3 ± I14, I13 ± I14 I3 5 I13, I3 5 I14, I13 5 I14

E I0 5 I1, I0 ± I2, I0 5 I3, I0 5 I13, 192 D I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I13, 192
I0 5 I14, I1 ± I2, I1 5 I3, I1 5 I13, I0 5 I14, I1 5 I2, I1 ± I3, I1 5 I13,
I1 5 I14, I2 ± I3, I2 ± I13, I2 ± I14, I1 ± I14, I2 ± I3, I2 5 I13, I2 ± I14,
I3 5 I13, I3 5 I14, I13 5 I14 I3 ± I13, I3 5 I14, I13 ± I14

F I0 ± I1, I0 ± I2, I0 ± I3, I0 ± I13, 192 E I0 ± I1, I0 ± I2, I0 ± I3, I0 ± I13, 192
I0 5 I14, I1 5 I2, I1 5 I3, I1 5 I13, I0 5 I14, I1 5 I2, I1 5 I3, I1 5 I13,
I1 ± I14, I2 5 I3, I2 5 I13, I2 5 I14, I1 ± I14, I2 5 I3, I2 5 I13, I2 ± I14,
I3 5 I13, I3 ± I14, I13 ± I14 I3 5 I13, I3 ± I14, I13 ± I14

G I0 ± I1, I0 ± I2, I0 ± I3, I0 5 I13, 192 F I0 ± I1, I0 ± I2, I0 ± I3, I0 5 I13, 192
I0 ± I14, I1 5 I2, I1 5 I3, I1 ± I13, I0 ± I14, I1 5 I2, I1 5 I3, I1 ± I13,
I1 5 I14, I2 5 I3, I2 ± I13, I2 5 I14, I1 5 I14, I2 5 I3, I2 ± I13, I2 5 I14,
I3 ± I13, I3 5 I14, I13 ± I14 I3 ± I13, I3 5 I14, I13 ± I14

H I0 ± I1, I0 ± I2, I0 5 I3, I0 5 I13, 192 G I0 ± I1, I0 ± I2, I0 5 I3, I0 5 I13, 192
I0 ± I14, I1 5 I2, I1 ± I3, I1 ± I13, I0 ± I14, I1 5 I2, I1 ± I3, I1 ± I13,
I1 5 I14, I2 ± I3, I2 ± I13, I2 5 I14, I1 5 I14, I2 ± I3, I2 ± I13, I2 5 I14,
I3 5 I13, I3 ± I14, I13 ± I14 I3 5 I13, I3 ± I14, I13 ± I14

I I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I13, 192 H I0 5 I1, I0 ± I2, I0 5 I3, I0 5 I13, 192
I0 ± I14, I1 5 I2, I1 ± I3, I1 5 I13, I0 5 I14, I1 ± I2, I1 5 I3, I1 5 I13,
I1 5 I14, I2 ± I3, I2 5 I13, I2 5 I14, I1 5 I14, I2 ± I3, I2 ± I13, I2 ± I14,
I3 ± I13, I3 ± I14, I13 5 I14 I3 5 I13, I3 5 I14, I13 5 I14

J I0 5 I1, I0 ± I2, I0 ± I3, I0 5 I13, 192 I I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I13, 192
I0 5 I14, I1 ± I2, I1 ± I3, I1 5 I13, I0 ± I14, I1 5 I2, I1 ± I3, I1 5 I13,
I1 5 I14, I2 5 I3, I2 ± I13, I2 ± I14, I1 5 I14, I2 ± I3, I2 5 I13, I2 5 I14,
I3 ± I13, I3 ± I14, I13 5 I14 I3 ± I13, I3 ± I14, I13 5 I14

K I0 5 I1, I0 ± I2, I0 5 I3, I0 ± I13, 192 J I0 5 I1, I0 ± I2, I0 ± I3, I0 5 I13, 192
I0 5 I14, I1 ± I2, I1 5 I3, I1 ± I13, I0 5 I14, I1 ± I2, I1 ± I3, I1 5 I13,
I1 5 I14, I2 ± I3, I2 5 I13, I2 ± I14, I1 5 I14, I2 5 I3, I2 ± I13, I2 ± I14,
I3 ± I13, I3 5 I14, I13 ± I14 I3 ± I13, I3 ± I14, I13 5 I14
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Table 6. Continued
aH1- Definite features n H4- Definite features n

bands bands

K I0 ± I1, I0 ± I2, I0 ± I3, I0 ± I13, 192
I0 ± I14, I1 5 I2, I1 5 I3, I1 5 I13,
I1 5 I14, I2 5 I3, I2 5 I13, I2 5 I14,
I3 5 I13, I3 5 I14, I13 5 I14

L I0 ± I1, I0 ± I2, I0 ± I3, I0 5 I13, 192
I0 5 I14, I1 5 I2, I1 5 I3, I1 ± I13,
I1 ± I14, I2 5 I3, I2 ± I13, I2 ± I14,
I3 ± I13, I3 ± I14, I13 5 I14

M I0 ± I2, I0 5 I3, I1 ± I14, I2 ± I13 576

‘ ± ’ indicates a perfectly negative correlation between input units; ‘ 5 ’ indicates a perfectly positive correlation between input units.
a n, number of patterns falling in each band.

Fig. 8. Jittered density plots for the first set of four hidden value units used in network 3.

Fig. 9. Jittered density plots for the second set of four hidden value units used in network 3.
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Table 7
Definite features for bands from hidden units 2 and 5 of network 2

aH2- Definite features n H5- Definite features n
bands bands

A I0 ± I2, I1 ± I3, I1 ± I10, I1 ± I11, 384 A I0 5 I1, I0 ± I2, I0 5 I3, 768
I3 5 I10, I3 5 I11, 10 5 I11 I1 ± I2, I1 5 I3, I2 ± I3

B I0 ± I2, I1 ± I3, I1 5 I10, I1 ± I11, 384 B I0 ± I1, I0 ± I2, I0 ± I3, 768
I3 ± I10, I3 5 I11, I10 ± I11 I1 5 I2, I1 5 I3, I2 5 I3

C I0 ± I2, I1 5 I3, I10 5 I11 768 C I0 ± I2, I1 ± I3 1536

D I0 ± I2, I1 5 I3, I10 ± I11 768

E I0 ± I2, I1 ± I3, I1 5 I11, I3 ± I11 768

‘ ± ’ indicates a perfectly negative correlation between input units; ‘ 5 ’ indicates a perfectly positive correlation between input units.
a n, number of patterns falling in each band.

the definite features that activated hidden unit 4. found in network 2, in which pairs of hidden units
After decoding the set of definite features, we see each detected rules and responses at specific card
that hidden unit 4 detected all the rules used to train locations. This analysis can also be used to under-
the network: 0011, 1100, 0110, 1001, 0010, 1101, stand the collaboration of hidden units in activating
0111, and 1000. Hidden unit 4, however, failed to outputs 1, 3 and 4 (see Tables 11–13).
detect any definite features associated with card
location. Hidden unit 4 in network 3 was similar to 5.3. Discussion
network 2’s hidden unit 5, except that hidden unit 4
enabled all remaining hidden units to detect desired We trained network 3 in order to explore the
responses (i.e., hidden unit 4 correlates highly with difficulty associated with network 2’s task. We
all hidden units when desired responses are located wanted to find out whether the task difficulty of
at corresponding card locations) whereas network 2’s selecting both the ‘p’ and ‘not-q’ cards originated
hidden unit 5 only enabled hidden unit 2 to detect from network 2’s need to select two cards or from
desired responses. the rigor of learning the ‘not-q’ selection. We

An inspection of the remaining hidden units attempted to answer this question by training net-
revealed that network 3’s algorithm for solving the work 3 to solve the task by selecting both the ‘p’ and
task was similar to network 2’s algorithm but with the ‘q’ cards. In this way we held constant the
some differences. For example, Table 11 shows the number of selections made by the network, while at
definite features that activated hidden unit 0. After the same time testing to see if selecting the ‘q’
decoding the definite features, we see that hidden response required fewer hidden units than network 2.
unit 0 was highly to moderately activated by patterns Training network 3 also served as a further test of
that had the following values at input units 1 through the specialized algorithm found for both networks 1
4: 0011, 1100, 0111, 1000, 0010, 1101, 0110, and and 2.
1001. In addition, hidden unit 0 was activated by Our results indicated that selecting the ‘p’ and ‘q’
responses located at card 2. Hidden unit 0 along with response to the selection task is as difficult to
hidden unit 4 helped to detect desired responses generate as selecting the ‘p’ and ‘not-q’ response.
located at card 2; hidden unit 0 detected rules and Network 3 required eight hidden units to learn to
responses at card 2, whereas hidden unit 4 only solve the task — the same number of hidden units as
detected rules. This division of labor among hidden network 2 required. Although network 3 required
units in network 3 is slightly different from that fewer epochs to converge to a solution (i.e., 115 for



J.P. Leighton, M.R.W. Dawson / Journal of Cognitive Systems Research 2 (2001) 207 –231 225

Table 8
Definite features for bands from hidden units 3 and 7 of network 2

aH3- Definite features n H7- Definite features n
bands bands

A I0 ± I2 1536 A I0 ± I2 1152

B I0 ± I2 768 B I0 5 I1, I0 ± I2, I0 5 I3, I0 5 I4, 192
I0 ± I5, I1 ± I2, I1 5 I3, I1 5 I4,
I1 ± I5, I2 ± I3, I2 ± I4, I2 5 I5,
I3 5 I4, I3 ± I5, I4 ± I5

C I0 5 I1, I0 ± I2, I0 5 I3, I0 5 I4, 192 C I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I4, 192
I0 5 I5, I1 ± I2, I1 5 I3, I1 5 I4, I0 ± I5, I1 5 I2, I1 ± I3, I1 5 I4,
I1 5 I5, I2 ± I3, I2 ± I4, I2 ± I5, I1 5 I5, I2 ± I3, I2 5 I4, I2 5 I5,
I3 5 I4, I3 5 I5, I4 5 I5 I3 ± I4, I3 ± I5, I4 5 I5

D I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I4, 192 D I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I4, 192
I0 5 I5, I1 ± I2, I1 ± I3, I1 ± I4, I0 5 I5, I1 ± I2, I1 ± I3, I1 ± I4,
I1 5 I5, I2 5 I3, I2 5 I4, I2 ± I5, I1 5 I5, I2 5 I3, I2 5 I4, I2 ± I5,
I3 5 I4, I3 ± I5, I4 ± I5 I3 5 I4, I3 ± I5, I4 ± I5

E I0 ± I1, I0 ± I2, I0 5 I3, I0 ± I4, 192 E I0 5 I1, I0 ± I2, I0 ± I3, I0 ± I4, 192
I0 ± I5, I1 5 I2, I1 ± I3, I1 5 I4, I0 ± I5, I1 ± I2, I1 ± I3, I1 ± I4,
I1 5 I5, I2 ± I3, I2 5 I4, I2 5 I5, I1 ± I5, I2 5 I3, I2 5 I4, I2 5 I5,
I3 ± I4, I3 ± I5, I4 5 I5 I3 5 I4, I3 5 I5, I4 5 I5

F I0 5 I1, I0 ± I2, I0 ± I3, I0 5 I4, 192 F I0 5 I1, I0 ± I2, I0 ± I3, I0 5 I4, 192
I0 5 I5, I1 ± I2, I1 ± I3, I1 5 I4, I0 ± I5, I1 ± I2, I1 ± I3, I1 5 I4,
I1 5 I5, I2 5 I3, I2 ± I4, I2 ± I5, I1 ± I5, I2 5 I3, I2 ± I4, I2 5 I5,
I3 ± I4, I3 ± I5, I4 5 I5 I3 ± I4, I3 5 I5, I4 ± I5

G I0 ± I1, I0 ± I2, I0–I3, I0 ± 14, 192
I0 5 I5, I1 5 I2, I1 ± I3, I1 5 I4,
I1 5 I5, I2 ± I3, I2 ± I4, I2 5 I5,
I3 ± I4, I3 ± 15, I4 5 I5

H I0 ± I1, I0 ± I2, I0 5 I3, I0 5 I4, 192
I0 ± I5, I1 5 I2, I1 ± I3, I1 ± I4,
I1 5 I5, I2 ± I3, I2 ± I4, I2 5 I5,
I3 5 I4, I3 ± I5, I4 ± I5

I I0 5 I1, I0 ± I2, I0 5 I3, I0 ± I4, 192
I0 ± I5, I1 ± I2, I1 5 I3, I1 ± I4,
I1 ± I5, I2 ± I3, I2 5 I4, I2 5 I5,
I3 ± I4, I3 ± I5, I4 5 I5

J I0 ± I1, I0 ± I2, I0 ± I3, I1 5 I2, 384
I1 5 I3, I2 5 I3, I4 ± I5

‘ ± ’ indicates a perfectly negative correlation between input units; ‘ 5 ’ indicates a perfectly positive correlation between input units.
a n, number of patterns falling in each band.

network 3 versus 414 for network 2), the number of the network had a ‘bad start’ — that is, the net-
epochs a network requires to learn a task is not an work’s initial random weights were highly dissimilar
unequivocal indicator of a task’s difficulty. A rela- from the network’s final weights. The number of
tively high number of epochs might only suggest that hidden units required by a network to converge to a
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Table 9
Correlation among hidden units when cards 1 and 2 are selected — network 3

H0 H1 H2 H3 H4 H5 H6 H7

Card 1:
H0 1
H1 0 1
H2 2 0.36 0 1
H3 2 0.31 0.131 2 0.3 1
H4 2 0.31 0.11 2 0.31 0.987 1
H5 2 0.1 0 2 0.1 0.265 0.249 1
H6 2 0.35 2 0.1 2 0.36 2 0.3 2 0.31 2 0.1 1
H7 2 0.1 0 2 0.1 0.298 0.269 0.988 2 0.1 1

Card 2:
H0 1
H1 0.06 1
H2 2 0.3 0 1
H3 2 0.3 0.05 2 0.36 1
H4 0.997 0.06 2 0.31 2 0.3 1
H5 0.169 0.07 2 0.18 0.223 0.169 1
H6 2 0.3 0 2 0.36 2 0.35 2 0.31 2 0.18 1
H7 2 0.14 0.103 0.05 0.06 2 0.16 0.249 0.05 1

Table 10
Correlation among hidden units when cards 3 and 4 are selected — network 3

H0 H1 H2 H3 H4 H5 H6 H7

Card 3:
H0 1
H1 0.02 1
H2 2 0.36 0 1
H3 2 0.35 0.08 2 0.36 1
H4 2 0.31 2 0.1 2 0.31 2 0.3 1
H5 2 0.18 2 0.14 2 0.18 0.222 0.168 1
H6 2 0.31 2 0.1 2 0.31 2 0.3 0.997 0.164 1
H7 0.05 0.09 0.05 0.06 2 0.16 0.247 2 0.14 1

Card 4:
H0 1
H1 0 1
H2 2 0.31 0.02 1
H3 2 0.36 0.07 2 0.3 1
H4 2 0.31 0.02 0.997 2 0.3 1
H5 2 0.18 0.09 0.163 0.222 0.165 1
H6 2 0.35 2 0.1 2 0.31 2 0.36 2 0.31 2 0.18 1
H7 0.05 0.145 2 0.14 0.06 2 0.16 0.247 0.05 1

solution is a much better indicator of task difficulty 2’s algorithm revealed some differences. For exam-
since hidden units index the number of dimensions ple, unlike the role of hidden unit 4 in network 2,
or ‘cuts’ demanded by the problem space in order to hidden unit 4 in network 3 detected rules exclusive-
solve the problem (Dawson, 1998). ly. However, hidden unit 4 in network 3 helped the

Comparing network 3’s algorithm against network other hidden units detect desired responses at their
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Table 11 solve the task is a better indicator of a task’s
Definite features for bands from hidden units 0, 1, and 2 of difficulty.
network 3

aHidden Band Definite features n
unit label

0 A I0 ± I2, I1 5 I3, I1 ± I7, I1 ± I8, 384 6. General discussion
I3 ± I7, I3 ± I8, I7 5 I8

Our purpose in this paper was to explore a0 B I0 ± I2 1152
connectionist account of performance on Wason’s

0 C I0 ± I2 1536 selection task. We attempted to meet this goal by
illustrating how three different PDP networks gener-

1 A I0 ± I2 3072 ated different solutions to the task. Two networks
were trained to generate common but only partially2 A I0 ± I2, I1 5 I3, I1 ± I13, I1 ± I14, 384
correct responses (i.e., the ‘p’ card alone and bothI3 ± I13, I3 ± I14, I13 5 I14
the ‘p and q’ cards) and one network was trained to

2 B I0 ± I2 1152 generate the fully correct response (i.e., ‘p and not-
q’).

2 C I0 ± I2 1536
Results from training these networks suggested

‘ ± ’ indicates a perfectly negative correlation between input that selecting the ‘p’ and ‘not-q’ response was more
units; ‘ 5 ’ indicates a perfectly positive correlation between input difficult than selecting only the ‘p’ response. The
units.

a difficulty was reflected in the greater number ofn, number of patterns falling in each band.
hidden units required by network 2 to learn to select
the ‘p’ and ‘not-q’ in response to the task. It was
possible, however, that network 2 required eight
hidden units to learn the task not because the taskrespective ‘specific’ card locations. Therefore, net-
was solved by selecting two cards but becausework 3 provided further evidence of a ‘specialized’
selecting the ‘not-q’ response was inherently dif-algorithm that focused on card location. To be sure,
ficult, as has been found with human participants. Wenetwork 3’s algorithm was slightly less complex if
settled this confound by training a third network towe look at the definite features detected by each of
select both the ‘p’ and ‘q’ cards in response to theits hidden units. For example, the jittered density
task.plots of network 3’s hidden units (with the exception

The results obtained from training network 3of hidden units 3 and 7) were characterized by few
revealed that selecting the ‘p’ and ‘q’ response wasbands. Only the jittered density plots of hidden units
as difficult as selecting the ‘p’ and ‘not-q’ response.3 and 7, as evidenced by their many bands, revealed
Network 3 also required eight hidden units toa more intricate distinction among input patterns.
converge to a solution (as did network 2). AlthoughAlthough network 3’s algorithm appeared less intri-
the algorithm that network 3 generated with thesecate as revealed by the banding, this evidence does
eight hidden units was characterized by the detectionnot suggest that generating the ‘p’ and ‘q’ solution is
of fewer input features (i.e., network 3’s jitteredmore easily accomplished than generating the ‘p’ and
density plots of hidden unit activity revealed fewer‘not-q’ solution. Number of bands is not a reliable
bands, suggesting fewer of the pattern’s definiteindicator of task difficulty since it only reflects the
features needed to be discriminated for a solution)pattern features falling into each of the decision
compared to network 2’s algorithm, banding resultsregions or cuts made by the hidden units. Although
are not indicative of task difficulty.the bands elucidate the definite features that the

Unlike number of hidden units, bands are notnetwork used to generate a response, the bands do
indicative of a task’s difficulty; the greater thenot by themselves reflect a task’s difficulty. The
number of bands one observes in a network’snumber of hidden units required by the network to
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Table 12
Definite features for bands from hidden units 3 and 7 of network 3

aH3- Definite features n H7- Definite features n
bands bands

A I0 ± I2, I1 5 I3, I1 ± I4, I1 ± I5, 384 A I0 ± I2 1632
I3 ± I4, I3 ± I5, I4 5 I5

AB I0 5 0, I1 5 1, I2 5 1, I3 5 0, I4 5 0, 96
B I0 ± I2 1056 I5 5 1

C I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 0, 96 AC I0 5 0, I1 5 1, I2 5 1, I3 5 0, I4 5 0, 96
I5 5 0 I5 5 0

D I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 0, 96 AD I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 0, 96
I5 5 1 I5 5 0

E I0 ± I2, I0 5 I4, I1 5 I5, I2 ± I4 288 AE I0 5 1, I1 5 1, I2 5 0, I3 5 1, I4 5 0, 96
I5 5 1

F I0 ± I2, I0 ± I4, I0 5 I5, I1 5 0, 192 96
I2 5 I4, I2 ± I5, I3 5 1, I4 ± I5 B I0 5 1, I1 5 1, I2 5 0, I3 5 1, I4 5 0,

I5 5 0
G I0 5 0, I1 5 I3, I1 5 I5, I2 5 1, I3 5 I5, 192

I4 5 1 C I0 ± I1, I0 ± I2, I0 ± I3, I0 5 I5, 192
I1 5 I2, I1 5 I3, I1 ± I5,

H I0 ± I2, I0 5 I4, I2 ± I4 384 I2 5 I3, I2 ± I5, I3 ± I5, I4 5 0

I I0 5 0, I1 5 1, I2 5 1, I3 5 0, I4 5 1, 96 D I0 5 1, I1 5 0, I2 5 0, I3 5 0, I4 5 0, 96
I5 5 0 I5 5 0

J I0 5 1, I1 5 I3, I1 5 I5, I2 5 0, I3 5 I5, 192 E I0 5 0, I1 5 0, I2 5 1, I3 5 0, I4 5 0, 96
I4 5 0 I5 5 0

K I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 1, 96 F I0 5 1, I1 5 0, I2 5 0, I3 5 0, I4 5 0, 96
I5 5 0 I5 5 0

G I0 5 1, I1 5 0, I2 5 0, I3 5 1, I4 5 0, 96
I5 5 0

H I0 5 1, I1 5 1, I2 5 0, I3 5 1, I4 5 0, 96
I5 5 0

I I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 0, 96
I5 5 1

J I0 5 1, I1 5 1, I2 5 0, I3 5 0, I4 5 1, 96
I5 5 0

K I0 5 0, I1 5 1, I2 5 1, I3 5 0, I4 5 0, 96
I5 5 0

‘ ± ’ indicates a perfectly negative correlation between input units; ‘ 5 ’ indicates a perfectly positive correlation between input units or it
can indicate that an input unit takes on a specific value or definite feature (e.g., I0 5 1).

a n, number of patterns falling in each band.

solution does not signal a greater complexity of the Person A has little experience in computer pro-
task being solved. The reason for this can be gramming but needs to create a computer pro-
illustrated with the following scenarios: gram that will keep track of household expenses.
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Table 13 expenses. Analyzing ‘banding’ in a value unit ar-
Definite features for bands from hidden units 4, 5, and 6 of chitecture provides clues as to the algorithm de-
network 3

veloped by the network to solve the task. These clues
aHidden Band Definite features n are important in order to understand how the task is

unit label solved by the network. However, banding does not
4 A I0 5 I1, I0 ± I2, I0 ± I3, I1 ± I2, 768 provide an index of task difficulty. The algorithm

I1 ± I3, I2 5 I3 used to solve a task and the task’s difficulty are not
4 B I0 ± I1, I0 ± I2, I0 5 I3, I1 5 I2, 768

necessarily the same thing.I1 ± I3, I2 ± I3
A possible criticism of the present approach is that4 C I0 ± I2, I1 5 I3 1536

5 A I0 ± I2 2688 the results we obtained are likely to be very depen-
5 B I0 ± I2, I1 5 0, I5 5 0 288 dent on the representation of the task. This charge,
5 C I0 5 1, I1 5 0, I2 5 0, I3 5 0, I4 5 0, 96 however, can be directed at most selection task

I5 5 0
studies that manipulate contextual variables — the6 A I0 ± I2, I1 5 I3, I1 ± I10, I1 ± I11, 384
responses are dependent on the specific contextualI3 ± I10, I3 ± I11, I10 5 I11

6 B I0 ± I2 1152 representation of the task. How investigators present
6 C I0 ± I2 1536 (or represent) a problem to human participants (or

networks) will undoubtedly influence the responses‘ ± ’ indicates a perfectly negative correlation between input
units; ‘ 5 ’ indicates a perfectly positive correlation between input made. The problem of representation has in large
units or it can indicate that an input unit takes on a specific value part been the source of experimental manipulations
or definite feature (e.g., I0 5 1). with the selection task since how the task is pre-a n, number of patterns falling in each band.

sented to participants has been shown to alter their
behavior (and the inferences made about reasoning

The algorithm he or she uses to create the competence). For example, presenting the task within
computer program is lengthy and intricate where a rich contextual framework leads to better ‘logical’
every step is included and its execution detailed performance than when the task is presented within
(as remembered from a course in programming an impoverished contextual framework.
that he or she took years ago). It is because of the multitude of algorithmic

theories about selection task performance that we
Now consider: attempted to explore an architectural account. Col-

lectively, the results obtained from training networks
Person B has extensive experience in computer 1, 2, and 3 provide a different perspective of
programming and needs to create a computer performance on the selection task. First, we found
program that keep track of household expenses. that all three networks solved the task by focusing on
The algorithm he or she uses will not likely be as card location. This focus on card location suggests
intricate as the algorithm used by person A. The that the cards or the evidence from which to test the
reason for this is that person B’s knowledge in rule in the selection task may be important to explain
programming will simplify the algorithm to in- participants’ performance. Few theories have focused
clude only the most fundamental and necessary on how participants specifically encode and interpret
features, with the details at each step being the nature of the evidence in the selection task. To be
already automated in procedural memory. sure, pragmatic reasoning theory, social contract

theory, and mental models theory are all theories that
Given both these scenarios, is it possible to evaluate can accommodate this specific dimension since they
how difficult it is to create a computer program that emphasize the interaction between the reasoner and
will keep track of household expenses? Not really the task. Nonetheless, this dimension has not yet
because the algorithms developed by person A and B been fully explored. We believe that future human
are more indicative of each person’s knowledge in studies of performance on the selection task should
the task domain than of the structural difficulties of focus specifically on how participants view or en-
creating a program to keep track of household code the evidence with which they will test the rule.
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Second, our results suggest that solving the selec- reasoning studies need to incorporate knowledge or
tion task by selecting cards ‘p’ and ‘q’ is as difficult expertise as a variable in models of performance.
as selecting cards ‘p’ and ‘not-q.’ This is a contro- In conclusion, architectural accounts are an im-
versial conclusion since the current literature leads us portant contribution to inquiry because they not only
to believe that selecting the ‘not-q’ card is inherently provide fundamental support or counters to theoret-
difficult for human participants to initiate. For exam- ical ideas but they are also a source of new theoret-
ple, rule theorists suggest that people might not have ical ideas. According to Shastri (1991),
the schemas to generate the ‘not-q’ response (Braine,
1978; Rips, 1994), whereas other theorists suggest [C]onnectionism should not be viewed merely as
that the ‘not-q’ response is obscured unless the task an implementation paradigm. For adopting the
is framed in a meaningful context (for a review, see connectionist paradigm forces us to revise many
Evans et al., 1993). We think that the difficulty might of our views about representation and reasoning.
be illusory, however; in principle generating the ‘p’ The most significant revisions stem from the fact
and ‘not-q’ cards might be just as easy (or difficult) that a connectionist system must operate without
as generating the ‘p’ and ‘q’ cards. The mediating an interpreter. ( p. 282)
variable determining how easy (or hard) it is to
generate the ‘p’ and ‘not-q’ might be the ‘corre-

We hope to see future studies focus on how reason-spondence’ between the participant and the task; that
ers encode the selection task and, in particular, howis, the level of expertise or knowledge that the
they encode or interpret the evidence with which toparticipant brings to the task.
test the rule. More generally, we hope to see moreOne distinguishing feature between novices and
architectural accounts of reasoning performance inexperts is in the algorithms they develop to solve
the literature so that the tools used to increase ourproblems (Anderson, 1983). Experts tend to abstract
understanding of cognitive phenomena do not remainsimplifying features and generate more elegant solu-
stagnant.tions to problems, in comparison to novices. For
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