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Abstract. In one simulation, an artificial neural network was trained to rate the distances
between pairs of cities on the map of Alberta, given only place names as input. Distance
ratings ranged from O (when the network rated the distance between a city and itself) to 10.
The question of interest was the nature of the representations developed by the network’s six
hidden units after it successfully learned to make the desired responses. Analyses indicated
that the network used coarse allocentric coding to solve this problem. Each hidden unit could
be described as occupying a position on the map of Alberta, and each connection weight
feeding into a hidden unit was related to the distance on the map between the hidden unit
and one of the stimulus cities. On its own, a single hidden unit’s response was a relatively
inaccurate distance measure. However, by combining all six hidden unit responses in a coarse
coding scheme, accurate responses were generated by the network. In a second simulation,
a second network was trained to make similar judgements, but was trained to violate the
minimality constraint on metric space when trained to judge the distance between a city and
itself. An analysis of this network indicated that it too was using coarse allocentric coding.

Key words: artificial neural network, coarse allocentric coding, minimality principle,
symmetry principle, triangle inequality

Introduction

Our everyday interactions with the visual and spatial world are grounded
in the essential experience that space is metric. Mathematically speaking,
a space is metric if relationships between locations or points in the space
conform to three different principles (Blumenthal 1953). The first is the
minimality principle, which dictates that the shortest distance in the space
is between a point x and itself. The second is the symmetry principle, which
dictates that the distance in the space between two points x and y is equal to
the distance between points y and x. The third is the triangle inequality, which
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dictates that the shortest distance in the space between two points y and x is a
straight line.

One recurring theme in the study of cognition, perception, and action is
that intelligent agents have internalized the metric properties of the space in
which they find themselves situated. As a result, the mental representations
used by these agents are thought by some researchers to have metric proper-
ties in their own right. In the sections that follow, we briefly review three
examples of this kind of proposal. In each example, we show that proposals
for metric spatial representations are not without controversy. Specifically,
agents can perform in ways that appear to violate the assumed metric structure
of their underlying representations. Furthermore, the neural structures that are
presumed to instantiate metric representations do not appear to be organized
in any way that maps neatly onto our notions of metric space.

The purpose of this paper is to examine this kind of controversy from the
perspective of synthetic psychology. Rather than taking an existing system
and analyzing its behaviour and representations, we choose to construct a
system capable of generating behaviour that preserves the properties of metric
space. In taking this approach, we are particularly interested in two questions.
First, if very few constraints are placed on the internal structure of this system,
then will it develop metric representations to guide its behaviour? Second,
if the same system is designed to generate behaviours that violate metric
properties of space, then will it develop nonmetric internal representations?
Or can both metric and nonmetric behaviours be mediated by similar (metric)
representations?

This paper proceeds as follows: first, we briefly review three proposals for
metric representations — similarity space, mental imagery, and the cognitive
map. We use this review to motivate our own studies. Second, we describe a
simulation in which a parallel distributed processing (PDP) network is trained
to make distance judgments that preserve the metric properties of space.
We show that this network uses an interesting internal representation that
appears to be metric in nature. Third, we describe another study in which a
PDP network is trained to make distance judgments that violate one of the
properties of metric space. Interestingly, the internal representations of the
second network are very similar to those used by the first. Finally, we discuss
some implications of the simulation results to proposals concerning metric
mental representations.

Similarity space representations

Similarity is one of the most important theoretical constructs in cognitive
psychology (Medin et al. 1993). The notion of similarity is central to theories
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of learning, perception, reasoning, and metaphor comprehension. One of
the goals of cognitive psychology has been to determine the mental repre-
sentations that enable similarity relationships to affect this wide range of
psychological phenomena.

One proposal that received a great deal of attention in the 1970s was
that concepts were represented as points in a multidimensional space, where
the dimensions of the space stood for either simple or complicated featural
properties (Romney et al. 1972; Shepard et al. 1972). In this kind of repre-
sentation, the similarity between two different concepts was reflected in the
distance between their locations in the multidimensional space. Researchers
conducted a number of different studies in which ratings of concepts were
used to position a set of concepts in the metric space. This empirically
derived space was then used to predict behaviour on a variety of different
tasks, including analogical reasoning (Rumelhart and Abrahamson 1973)
and judgments of the aptness of metaphor (Tourangeau and Sternberg 1981,
1982).

Importantly, one of the main assumptions underlying the similarity space
proposal was that this space was metric. On the basis of this assumption, one
would expect that the metric properties of the space would be reflected in the
behaviours that were governed by the space. For example, if a subject used
the similarity space to rate the similarity between two concepts A and B, then
one would expect these ratings to be symmetric: the similarity between A and
B should be the same as the similarity between B and A, because the distance
between A and B in the similarity space is presumed to be symmetric.

Tversky and his colleagues conducted a number of experiments that
demonstrated that similarity judgments were not metric, because in different
situations it could be shown that these judgments were not always symmetric,
did not always conform to the minimality principle, and did not always
conform to the triangle inequality (Tversky 1977; Tversky and Gati 1982). As
a result, many researchers abandoned the notion of the similarity space, and
instead moved to feature based comparison models that could easily handle
nonmetric regularities. This was in spite of the fact that it is possible to use
a perfectly metric representational space to mediate nonmetric judgments.
For example, (Krumhansl 1978, 1982) demonstrated that if one took a metric
space and augmented the kind of operations that were applied to it one could
easily account for asymmetric similarity judgments.

The architectural debate about whether similarity spaces mediated simi-
larity judgments illustrates a tension that is central to the current paper.
The tension is between regularities observed in behaviour and regularities
attributed to underlying mental representations. At issue is whether all of
the regularities in a representation assert themselves in behaviours or in
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judgments that exploit the representation. If the representation is a metric
space, does this imply that behaviour will also be metric? Or can a metric
representation be used to mediate behaviour that is nonmetric in nature?

Depictive mental imagery

The second illustration of the tension between metric behaviour and metric
representation in cognitive psychology can be found in the study of mental
imagery. Mental imagery is a visual experience that is usually elicited when
people solve visuospatial problems. Not only does mental imagery provide
a visual or pictorial experience, but mental images give the sense of being
manipulated in a spatial manner — for instance, by being scanned, rotated, or
zoomed in to (Kosslyn 1980).

While our experience of mental images is definitely spatial in nature,
there has been a long-standing debate about whether the underlying represen-
tation that supports mental imagery is spatial or not. On the one hand, some
researchers have argued that the representational format of mental images
is depictive or spatial in nature (Kosslyn 1980). According to this position,
images occur in a spatial medium that is equivalent to a coordinate space.
The pattern formed in this spatial medium is topographically organized so
that each local portion of the image corresponds to a portion of a represented
object as seen from a particular point of view, and the distances between
the portions of the image implicitly represent the distances between parts
of the object being represented. Images not only depict information about
spatial extent, but also depict information about the appearance of surface
properties of objects. On the other hand, other researchers have argued that
while mental images are experienced spatially, their representational format
is not spatial at all. For instance, it has been argued that mental images could
be represented in a non-depictive format, for instance as a set of statements in
propositional logic (Pylyshyn 1973; Pylyshyn 1981). The major papers that
explore different sides of this debate have been collected in Block (1981).

In the early stages of the imagery debate, behavioural experiments were
used to collect evidence either for or against the depictive position. Many
studies recorded the reaction times of subjects as they manipulated mental
images to perform some task, and found, for instance, that latencies increased
linearly as a function of increases in the distance that an image had to be
scanned or of increases in the amount that an image had to be rotated (Kosslyn
1980; Shepard and Cooper 1982). Such results provided strong support to the
depictive position. However, other researchers found that by manipulating
the tacit beliefs of subjects (Bannon 1980), or by altering the complexity
of the image being used (Pylyshyn 1979), the linear relationship between
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reaction time and image properties could be eradicated. These findings were
used to argue that mental imagery is cognitively penetrable, and that our
experience of mental images is based upon more primitive and non-spatial
representational components (Pylyshyn 1980, 1981, 1984).

Much of this experimental work ground to a halt after the publication of an
influential paper that proposed the “indeterminacy of representation” thesis
(Anderson 1978). Anderson argued that behavioural evidence could never be
used to resolve the imagery debate because different representational systems
could lead to identical behavioural predictions. Anderson went on to explore
additional constraints or types of evidence that might be useful in resolving
representational issues. One of these was physiological data: “if we could
open the brain and observed that operating on pictures or on propositions, it
seems that the issue would be settled” (p. 271).

Recent research related to the imagery debate has attempted to exploit
exactly this type of data. In particular, Kosslyn has turned to evidence
from cognitive neuroscience in an attempt to explore the representations
responsible for mental imagery. Kosslyn and others have used a variety of
modern brain imaging techniques to show that when people generate mental
images, they use many of the same brain areas that are also used to mediate
visual perception (Farah et al. 1989; Kosslyn 1994; Kosslyn et al. 1999;
Kosslyn et al. 1997; Kosslyn et al. 1995; Thompson et al. 2001). In particular,
mental imagery elicits activity in the primary visual cortex, a brain area that is
organized topographically. Kosslyn has used this kind of evidence to propose
an information processing system that is responsible for the generation and
manipulation of images. He argues that mental images are patterns of activity
in a visual buffer that is a spatially organized structure in the occipital lobe.

However, even these neuroscience-based conclusions are not without
controversy. In a detailed review of the literature, Mellet et al. (1998) cite
several studies that have found that some mental imagery tasks do not produce
activity in primary visual cortex. Furthermore, in some cases mental imagery
can generate activity in brain areas that are also activated by other (non-
spatial) higher order cognitive processes, such as language and memory.
Mellet et al. use this kind of evidence to argue that there is no cortical network
that is uniquely associated with mental imagery.

In the previous section on similarity spaces, we noted a tension or incon-
sistency between a proposed spatial representation and observed (nonmetric)
behaviour. In the current section, a similar tension is evident. Specifically, in
the imagery debate we have on the one hand an experience that is clearly
spatial in nature, but on the other hand we have no clear resolution to the
debate about whether this experience is mediated by a mental representation
that is spatial or not.
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Cognitive maps of space

A third illustration of this tension between metric behaviour and metric
representation can be found in the study of the hippocampus as a cognitive
map. Beginning with Tolman’s (1932, 1948) proposal that the spatial abilities
of the rat were mediated by cognitive maps, representations that preserve
the metric properties of space have been fundamentally important to the
study of how humans and animals navigate (Kitchin 1994). Behavioural
studies have demonstrated that animal representations of space do indeed
appear to preserve a good deal of its metric nature (for introductions, see
Cheng and Spetch 1998; Gallistel 1990, Chap. 6). Many researchers are now
concerned with identifying the biological substrates that encode metric space.
Single-cell recordings of neurons in the hippocampus of a freely moving
animal have provided compelling biological evidence that one function of
the hippocampus is to instantiate a metric cognitive map (O’Keefe and Nadel
1978).

In particular, neuroscientists have discovered place cells in the hippo-
campus that respond only when a rat’s head is in a particular location in
the environment (O’Keefe and Nadel 1978). These place cells can be driven
by visual information (e.g., by the presence of objects or landmarks in the
environment), and appear to be sensitive to some of the metric attributes of
space. For example, O’Keefe and Burgess (1996) found evidence that the
receptive field of a place cell can be described as the sum of two or more
Gaussian tuning curves sensitive to the distance of the animal away from a
wall in its environment.

However, it has been argued that place cell circuitry by itself does
not provide a cognitive map that can be considered to be metric in the
mathematical sense. First, place cells are not organized topographically;
the arrangement of place cells in the hippocampus is not isomorphic to
the arrangements of locations in an external space (Burgess et al. 1995;
McNaughton et al. 1996). Second, it has been argued that place cell receptive
fields are at best locally metric (Touretzky et al. 1994), and that as a result a
good deal of spatial information (e.g., information about bearing) cannot be
derived from place cell activity. Some researchers have argued that place cells
make up only a part of the cognitive map, and that the neural representation
of metric space requires the coordination of a number of different subsystems
(McNaughton et al. 1996; Redish and Touretzky 1999; Touretzky et al. 1994).

It would appear that how the hippocampus provides a metric represen-
tation of space is still an open question (Redish 1999, Chap. 15). One reason
that this question has not been satisfactorily answered is because while there
is a great deal of functional understanding of the structure of the hippocampus
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(i.e., the kinds of stimuli which cause cells to respond), there is much less
understanding of how the underlying neural circuitry encodes spatial infor-
mation. “Despite the remarkable properties of place cells and a number of
interesting theoretical proposals, there is no generally accepted account of
the function of place cells in spatial orientation” (Sherry and Healy 1998).

Rationale for the current studies

The three examples that were briefly reviewed above all involve proposals
for metric, spatial representations that mediate spatial behaviour. However, in
each example it was shown that such proposals are not without controversy.
In some instances, behaviour that is presumably guided by the representation
can violate the metric properties of space. In other instances, inspections of
the representational or neural structures that mediate spatial behaviour or
experience reveal regularities that are inconsistent with the notion that the
underlying structure is metric in nature.

One reason that such inconsistencies emerge is because a general strategy
in cognitive psychology is to develop theories about underlying repre-
sentations by decomposing complex behaviour into more basic functions
(Cummins 1983; Dawson 1998). While this approach, called functional
analysis, has been extremely successful, it can be dangerous to use. One
problem with it is that it can lead to theories that are more complicated than
necessary, because the decomposition can fail to partition behaviour appro-
priately into three different categories (behaviour caused by the organism,
behaviour elicited by a complex environment, and behaviour that emerges
at the interface between an agent and its environment) (Braitenberg 1984;
Simon 1996). A second problem is that the decomposition is theory-driven,
and as a result can miss regularities that are real, but not intuitively obvious.
“The tendency will be to break different capacities down into different
constituent processes. As a result, explanations that are given of the capabili-
ties in question will rest on a false and artificial theory, one that is, in effect,
engineered to account for data but that is not a realistic model of human
neuropsychology” (Rollins 2001, p. 271).

One alternative to functional analysis has been called synthetic psycho-
logy (Braitenberg 1984), and involves taking a fixed set of building blocks
and using them to create a system that generates complex or interesting beha-
viour (Brooks 1999; Minsky 1985; Pfeifer and Scheier 1999). The complex
behaviour emerges from the interaction of the system’s components with
each other and with the environment. One advantage of this approach is
that it is often theory-neutral with respect to the behaviour that emerges
(Dawson 1998). Because of this, a second advantage of this approach is that
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it can lead to the discovery of novel representations for generating behaviour,
because preconceived representational theories are not required to guide the
construction of the model.

The purpose of the current paper is to illustrate this synthetic approach,
by using computer simulations to suggest how a brain-like system might
represent the metric properties of space and mediate spatial behaviour. In
particular, we describe parallel distributed processing (PDP) networks that
were trained to rate the distance between pairs of places in Alberta. After
training the networks to perform this task, we examined in detail the internal
representations that they had developed. This examination was performed
with two different questions in mind. First, when a network is trained to
make metric judgements, do its hidden units develop a metric represen-
tation of space? Second, when a network is trained to make judgements
that are not metric, do its hidden units develop a markedly different internal
representation, or is a metric representation still used?

Simulation 1: Metric spatial judgements

This section of the paper proceeds as follows. First, we briefly introduce PDP
networks in general, and focus on a particular type of PDP network, called
networks of value units. Second, we describe how one network of value units
was trained to make spatial judgements. Third, we present a detailed analysis
of the structure of the hidden units of this network. Finally, we relate the
structure found in these hidden units to research concerning the nature of the
cognitive map in the hippocampus.

A brief introduction to PDP networks

A PDP network is a computer simulation of a “brain-like” system of inter-
connected processing units (see Figure 1). In general, such a network can
be viewed as a multiple-layer system that generates a desired response to an
input stimulus. The stimulus is provided by the environment, and is encoded
as a pattern of activity in a set of input units. The response of the system is
represented as a pattern of activity in the network’s output units. Intervening
layers of processors in the system, called hidden units, detect features in
the input stimulus that allow the network to make a correct or appropriate
response.

Each processing unit in a PDP network is analogous to a neuron. The
behaviour of a single processing unit in this system can be characterized as
follows: First, the unit computes the total signal being sent to it by other
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Figure 1. A multilayer perceptron. The environment activates input units, which in turn
produce activity in a layer of hidden units. The hidden units then produce a response by
sending signals that produce activity in the output units. Links between layers are weighted
connections; the values of the weights are determined by having the network learn through
examples. This particular network is described later in the paper. Given two input city names,
the network was trained to rate the distance between the cities on a map of Alberta.

processors in the network. Second, the unit adopts a particular level of internal
activation on the basis of this computed signal. Third, the unit generates its
own signal, which is based on its level of internal activity, and sends this
signal on to other processors.

The signal sent by one processor to another is transmitted through a
weighted connection. Such a connection is typically described as being
analogous to a synapse, and serves as a communication channel that amplifies
or attenuates a numerical signal being sent through it. This is accom-
plished by multiplying the signal’s value by the weight associated with the
connection. The weight defines the nature and strength of the connection.
For example, inhibitory connections are defined with negative weights, and
excitatory connections are defined with positive weights. Strong connections
have strong weights (i.e., the absolute value of the weight is large), while
weak connections have near-zero weights.



190

The pattern of connectivity in a PDP network (i.e., the network’s entire
set of connection weights) defines how signals flow between the processors.
As a result, a network’s connection weights are analogous to a program in a
conventional computer (Smolensky 1988). However, in contrast to a conven-
tional computer, a PDP network is not given an explicit program to perform
some desired task. Instead, the network is taught to do the task.

For example, consider a popular learning procedure called the general-
ized delta rule (Rumelhart et al. 1986). One starts with a network that has
small, randomly assigned connection weights. The network is then taught
by presenting it a set of training patterns, each of which is associated with
a known correct response. To train a network on one of these patterns, the
pattern is presented to the network’s input units, and (on the basis of its
existing connection weights) the network generates a response to it. An error
term is calculated which is essentially the difference between the desired
response of the output unit and its actual response. This error term can be
used to modify the network’s connections in such a way that the next time
this pattern is presented to the network, the amount of error in the network’s
response will be smaller.

When using the generalized delta rule, error is used to modify connection
weights by sending it backwards through the network. Once the error term for
each output unit has been calculated, the weights of the connections directly
attached to each output unit are modified. Then the output units send their
error as a signal through the modified connections to the next layer of hidden
units. Each hidden unit computes its overall error by treating the incoming
error signals as net input (i.e., a hidden unit’s total error is the sum of the
weighted error signals that it is receiving from each output unit). Once a
hidden unit has computed its overall error, then the weights of the connections
that are directly attached to it can be modified. This process can be repeated,
if necessary, to send error signals to the next layer of hidden units, and stops
once all of the connections in the network have been modified. By repeating
this procedure a large number of times for each pattern in the training set,
the network’s response errors for each pattern can be reduced to near zero.
At the end of this training, the network will have a very specific pattern of
connectivity (in comparison to its random start), and will have learned to
perform a particular stimulus/response pairing.

The value unit architecture

One of the main functions of a PDP processing unit is to use an activation
function to convert its net input into an internal level of activity that usually
is some continuous value that ranges between 0 and 1. For most networks
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trained with the generalized delta rule, the activation function is a sigmoid-
shaped curve that is defined by the logistic equation (Rumelhart et al. 1986).
This function monotonically increases with increases in net input, and for
this reason units that use this activation function have been called integration
devices (Ballard 1986).

However, PDP architectures can differ from one another along a variety
of dimensions (Dawson 1998). One important distinction between different
classes of PDP networks involves the activation function. Not all PDP
networks are composed of integration devices. Some networks use processors
that are tuned to activate to a small range of net inputs, and generate weak
responses to net inputs that are either too small or too large to fall in this
range. In other words, the response of such a processor is nonmonotonically
related to increases in net input, and for this reason it is called a value unit
(Ballard 1986).

One example of a network of value units is an architecture designed by
Dawson and Schopflocher (1992). The processing units in this architecture
use a Gaussian activation function that ranges between 0 and 1, with a
standard deviation of 1. These units generate a maximum response of 1 when
their net input is equal to the mean of the Gaussian. Networks of value units
are trained with a variation of the generalized delta rule.

The research below involved training networks of value units on a distance
estimation task. This architecture was used because one of the primary goals
of the research was to interpret the internal representations discovered by
the network. A number of different studies have demonstrated that networks
of value units permit their internal structure to be interpreted in great detail
(Berkeley et al. 1995; Dawson 1998; Dawson and Medler 1996; Dawson et
al. 1997; Dawson et al. 2000; Leighton 1999; Zimmerman 1999).

A second reason that this architecture was used was because of the existing
literature on place cell behaviour. Place cells in the hippocampus behave as
though they are value units — they are tuned to respond to particular ranges
of spatial measurements in the environment, and their behaviour suggests
that their distance sensitivity is modulated by a Gaussian response function
(O’Keefe and Burgess 1996). This suggests that the value unit architecture
is particularly appropriate for studying how networks of parallel processors
represent spatial information, particularly if one goal of the simulation
research is to explore representations that might be found in hippocampal
circuitry.
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Method

Problem definition

Multidimensional scaling (MDS) is a statistical technique that takes proxi-
mity information as input, and then converts this information into a geometric
configuration of points from which the proximities can be derived (Kruskal
and Wish 1978). For example, if one were to give MDS a table of distances
between cities (e.g., a table commonly found on a roadmap), MDS would
produce a map with each city situated in the correct location.

MDS has been commonly used to construct psychological spaces from
proximity data that is analogous to distances between cities. The most
common approach to obtaining such data is to present pairs of objects
to human subjects, and to have subjects rate the “psychological distance”
between the objects. For example, subjects might be asked to judge how
similar or related the two objects are (Shepard 1972).

In the first simulation described below, we trained a network to make such
judgements about the “crows flight” distances between places on a map. We
chose thirteen different locations in the province of Alberta: Banff, Calgary,
Camrose, Drumheller, Edmonton, Fort McMurray, Grande Prairie, Jasper,
Lethbridge, Lloydminster, Medicine Hat, Red Deer, and Slave Lake. We took
all possible pairs from this set to create a set of 169 different stimuli, each
of which could be described as the question “On a scale from O to 10, how
far is City 1 from City 2?”. Because all possible pairs of place names were
used, some of the stimuli involved rating the distance from one place to itself.
As well, for different place names a rating would be obtained for both orders
of places (e.g., the distance between Banff and Calgary would be rated, as
would the distance between Calgary and Banff).

The desired ratings for each stimulus were created as follows. First, from
a map of Alberta we determined the shortest distance in kilometres between
each pair of locations (see Table 1a). Second, we converted these distances
into ratings. If a stimulus involved rating the distance from one place to itself,
the rating was assigned a value of 0. Otherwise, if the distance was less than
100 kilometres, then it was assigned a value of 1; if the distance was between
100 and 199 kilometres, then it was assigned a value of 2; if the distance
was between 200 and 299 kilometres, then it was assigned a value of 3; and
so on up to a maximum value of 10 which was assigned to distances of 900
kilometres or more. The complete set of ratings that were used is provided in
Table 1b.

Because this ratings matrix was based on physical distances between
geographic locations, and because we enforced the minimality principle by
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Figure 2. The locations of 13 Albertan cities taken from the MDS analysis of the ratings
matrix of Table 1b. The positions of the cities is very similar to their locations on a map of
Alberta.

requiring that the distance between a place and itself should be rated as 0,
this set of judgements was metric in nature. To confirm this, we applied
multidimensional scaling to the ratings data, forcing a solution in which
the configuration of points delivered by MDS was restricted to two dimen-
sions. The success of MDS depends upon the assumption that the data being
analyzed has properties that conform to the metric constraints upon space.
Our solution accounted for 99.4% of the variance in the ratings matrix, and
produced a configuration of points that agreed quite nicely with the locations
of the thirteen cities on a road map of Alberta (see Figure 2).

Network architecture

The network that was trained to make the distance ratings was a network of
value units that had 10 output units, 6 hidden units, and 13 input units. The
overall architecture of the network was illustrated earlier in Figure 1.

Input unit representation. The input units used a very simple unary nota-
tion to represent pairs of places to be compared. Each input unit represented
one of the thirteen place names. Pairs of places were presented as stimuli by
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turning two of the input units on (that is, by activating them with a value
of 1). For example, to ask the network to rate the distance between Banff
and Calgary, the first input unit would be turned on (representing Banff), as
would the second input unit (representing Calgary). All of the other input
units would be turned off (that is, were activated with a value of 0). This unary
representational scheme was chosen because it contains absolutely no infor-
mation about the location of the different places on a map of Alberta. In other
words, the input units themselves did not provide any metric information that
the network could use to perform the ratings task.

It should be noted that this kind of input representation is not sensitive
to the order of cities in a question of the form “How far is City 1 from
City 27”. For example, the input representation of the question “How far is
Banff from Calgary?” is identical to the representation of the question “How
far is Calgary from Banff?”. Because of this, and because we used all 169
city pairs from the ratings taken from Table 1b, all of the patterns — except
those representing the diagonal of Table 1b — were represented twice in the
training set. We elected to do this because we intend to compare the results
reported below with future networks in which the symmetry constraint is
violated, and as a result 169 unique stimuli will be presented to networks.
It should also be noted that using this input representation, distance ratings
representing the diagonal entries from Table 1b involve activating only one
input unit. For example, the input representation of the question “How far is
Banff from Banff?” involves turning only the first input unit on, because this
unit represents Banff.

Hidden units. Six hidden units were included in this network to solve the
problem. Each of these units was a value unit. We selected this number of
hidden units because pilot tests had shown that this was the smallest number
of hidden units that could be used by the network to discover a mapping from
input to output. When fewer than six hidden units were used, the network
was never able to completely learn the task. Previous research has suggested
that forcing a network to learn a task with the minimum number of hidden
units produces a network that is much easier to interpret, in comparison to
a network that has more hidden units than are required to solve a problem
(Berkeley et al. 1995).

Output unit representation. Ten output units were used to represent the
network’s rating of the distance between the two place names presented as
input. The output units were also value units. To represent a rating of 0, the
network was trained to turn all of its output units off. To represent any other
rating, the network was trained to turn on one, and only one, of its output
units. Each of these output units represented one of the ratings from 1 to 10.
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For example, if the network turned output unit 5 on, this indicated that it was
making a distance rating of 5.

Network training

The network was trained using the variation of the generalized delta rule
that has been developed for networks of value units (Dawson and Schopf-
locher 1992). Prior to training, all of the connection weights were randomly
assigned values ranging from —0.10 to +0.10. The biases of processing units
(i.e., the means of the Gaussian activation functions, which are analogous
to thresholds) were randomly assigned values ranging from —0.50 to +0.50.
The network was trained with a learning rate of 0.10 and zero momentum.
During each sweep of training, each of the 169 stimuli was presented to
the network. The learning rule was used to update connection weights in the
network after each stimulus presentation. Prior to each sweep of training, the
order of stimulus presentation was randomized.

Training proceeded until the network generated a “hit” or every output
unit on every pattern. As is our typical practice, a hit was operationalized as
an activation of 0.90 or higher when the desired activation was 1.00, and as an
activation of 0.10 or lower when the desired activation was 0.00. The network
converged on a solution to the problem — generating a correct response for
each of the 169 patterns — after 10,907 sweeps of training.

Results

At the end of training, we had produced a network that correctly rated the
distances between places in Alberta on a scale from O to 10. The ratings gener-
ated by the network conform to the metric constraints of space. The question
of interest concerns the kinds of internal representations used by the network
to generate this metric behaviour. In what way do the hidden units of this
network represent the metric structure of a two-dimensional map of Alberta?
Have the hidden units developed a metric representation of space? Or have
the hidden units instead developed some complex nonmetric representation
from which metric behaviour can be derived?

Relating the map of Alberta to hidden unit connection weights

To begin our analyses, we explored the possibility that the network might
have developed internal representations similar in nature to those that have
been attributed to cells in the hippocampus. For example, consider the
possibility that each hidden unit occupies a position in the map of Alberta, and
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uses its connection weights to represent the distances from the hidden unit to
each of the Albertan cities. If this hypothesis is correct, then one should be
able to find a position for each hidden unit on the map of Alberta such that
there is a substantial correlation between the unit’s connection weights and
the distances from each city to the hidden unit location.

In order to test this hypothesis, we need some objective method of finding
a map location for each hidden unit that optimizes the correlation between
map distances and connection weights. The method that we adopted was the
Solver tool in Microsoft Excel. The Solver tool is a program that manipu-
lates the values of specified cells in a spreadsheet as it attempts to optimize
the value of one other cell (Orvis 1996). Solver uses a particular algorithm,
called the generalized reduced gradient method (Fylstra et al. 1998; Gill et
al. 1981; Lasdon et al. 1978), to search through different values to find those
that produce this optimum value.

For our purposes, we created a spreadsheet that contained the latitude and
longitude of each of the 13 Albertan cities. To process one of the hidden units,
we initially assigned it a latitude and longitude that placed it in the middle of
the map of the province. Using these latitude and longitude coordinates, the
spreadsheet was designed to calculate the Euclidean distance between each
city and the (current) position of the hidden unit. These 13 distances were
then correlated with the 13 connection weights feeding into the hidden unit.
This correlation was the value that the Solver tool optimized. The Solver
tool searched for the latitude and longitude of the hidden unit that produced
the most extreme correlation between distances and connection weights. We
found, for each hidden unit, a map location for the unit that produced strong
correlations between city distances to that location and the hidden unit’s
incoming connection weights (see Table 2).

These correlations suggest that the weights feeding into each hidden unit
represent the distance between each city and the hidden unit, with the hidden
unit occupying a particular location on the map of Alberta. Figure 3 illustrates
the map of Alberta with both the locations of the 13 cities and the locations
of the 6 hidden units.

Relating connection weights to hidden unit MDS spaces

The previous analysis indicated that each hidden unit could be viewed as
occupying a position on the map of Alberta, and that its connection weights
were related to distances between the hidden unit and the 13 cities on the
map. However, while the correlation between map distances and connec-
tion weights were substantial, they were not as strong as we expected. One
problem with the previous analysis is that it imposes our notion of the space
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Table 2. Results of relating Alberta map distances between cities and
hidden units the values of the connection weights feeding into the
hidden units in Simulation 1

Hidden Unit Hidden Unit Hidden Unit  Correlation Between
Latitude Longitude =~ Map Distances And
Incoming Weights
HO 51.72 113.55 0.88
H1 50.84 113.63 0.59
H2 50.88 117.70 0.72
H3 53.39 115.05 -0.54
H4 53.91 113.42 0.79
H5 51.17 115.57 -0.48
I
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Figure 3. The locations of the six hidden units from the first simulation on the map of
Alberta. These locations optimized the correlations between hidden unit connection weights
and distances from the cities to the hidden units.
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in question (i.e., the map of Alberta) onto the behaviour of the hidden units.
It does not permit the possibility that the hidden units are spatial, but the
space that they are sensitive to is quite different from the map in Figure 2.
There are at least two reasons to expect that the hidden units have a distorted
representation of the map.

The first reason is theoretical. If connection weights leading into a hidden
unit represent distance, then these distances are dramatically transformed by
the Gaussian activation function of the hidden unit when connection weight
signals are converted into hidden unit activity. We would expect that this kind
of transformation would be equivalent to a distortion of the Figure 2 map.

The second reason is empirical. For any input pattern, a hidden unit’s
activity can be viewed as being analogous to that hidden unit’s rating of the
distance between cities. If we examine hidden unit activity to various pairs of
cities, then we can see that the hidden unit’s “ratings” do not seem particu-
larly accurate. Consider, for example, hidden unit 2. When the network is
asked to rate the distance between Red Deer and Jasper, this unit generates an
activation value of 0.69. On the map of Alberta, the distance between Jasper
and Red Deer is 413 km. However, nearly identical behaviour is produced
in the unit by two other cities, Edmonton and Lloydminster, which are much
closer together on the map (251 km). When these two cities are compared an
activation of 0.71is produced in hidden unit 2.

If the hidden units are spatial in nature, but are dealing with a space that
is quite different from the one that we might expect (i.e., Figure 2), then how
should we proceed to analyse their behaviour? One approach would be to
consider each hidden unit as being a subject in a distance rating experiment.
For each stimulus, the rating generated by the hidden unit is the hidden unit’s
activity. If we take all of these ratings and organize them into a table like
Table 1, then we can apply MDS to this data. This analysis will determine the
structure of the space that underlies the hidden units behaviour. We can then
relate properties of this space to the connection weights that feed into each
unit.

In this second analysis, we created a 13 x 13 “activity matrix” for each
hidden unit, in which each row and each column corresponded to an Albertan
city, and each matrix entry a;; was the hidden unit’s activation value when
the network was asked to rate the distance between city i and city j. We used
MDS to analyse each of these activity matrices, in order to create a space that
represented each hidden unit’s perspective on the map. We found that for each
hidden unit a two-dimensional MDS solution accounted for almost all of the
variance in the data. This solution generated an R? of 0.98 for hidden unit 0,
1.00 for hidden unit 1, 0.99 for hidden unit 2, 1.00 for hidden unit 3, 0.99 for
hidden unit 4, and 0.97 hidden unit 5. In each of these two-dimensional solu-
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Table 3. Results of relating connection weights to city distances from the MDS
solutions obtained from the activity matrix for each hidden unit in Simulation 1.
The table provides the maximum correlation, as well as the coordinates of the
hidden unit in the space that produces this maximum correlation

Hidden Unit  X-Coordinate Of X-Coordinate Of = Correlation Between
Hidden Unit Hidden Unit MDS Distances And
Connection Weights

HO 1.53 -1.88 -0.95
H1 -0.07 0.10 0.96
H2 -1.33 0.31 —0.88
H3 -0.13 -0.14 0.93
H4 0.07 0.16 -0.95
H5 3.20 0.19 -0.96

tions, the 13 different cities were arranged in a roughly circular or elliptical
pattern around an origin; the specific arrangement varied from one unit to
another. Thus, none of the maps resembled the actual Alberta map. However,
this analysis did yield a set of x- and y-coordinates for each Albertan city in
a two-dimensional space that was customized for each hidden unit.

The second phase of this analysis was to repeat our previous analyses, by
determining the coordinates for each hidden unit that optimized the correla-
tion between the unit’s connection weights and the distances from each city
to the unit. However, instead of using the map of Alberta, for each hidden
unit we used the coordinates of the cities obtained from the MDS analysis of
the unit’s activity matrix. With these analyses, for each hidden unit we found
a location in the MDS space that produced a near perfect correlation between
distances and connection weights, as is reported in Table 3.

Coarse coding from hidden unit activations to distance ratings

The previous analyses have indicated that the network has developed a spatial
representation of the locations, in which the weights that feed into a hidden
unit encode information about the distance between the hidden unit’s location
in a 2D space and city locations in the same space. However, we have not
yet discussed how the features detected by the hidden units are combined to
generate the ratings that the network has been trained to produce.

It was pointed out earlier that an individual unit’s responses to different
stimuli were not necessarily accurate. For instance, when presented two cities
that were relatively close together, a unit might generate internal activity very
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similar in value to that generated when presented two other cities that were
much further apart. To verify this claim quantitatively, we took the activity
of each hidden unit and correlated it with the desired rating for the input
patterns. For units HO through HS, these correlations were —0.32, 0.04, 0.04,
—-0.10, 0,04, and 0.16. It would appear that the activities of individual hidden
units are at best weakly related to the desired distance ratings. As well, none
of the MDS analyses of hidden unit activity matrices revealed a plot that bore
any resemblance to the actual map of Alberta. How is it possible for such
inaccurate responses to result in accurate outputs from the network?

The answer to this question is that the hidden unit activations in the
network are a form of representation called coarse coding. In general, coarse
coding means that an individual processor is sensitive to a broad range of
features, or at least to a broad range of values of an individual feature
(e.g., Churchland and Sejnowski 1992). As a result, individual processors
are not particularly useful or accurate feature detectors. However, if different
processors have overlapping sensitivities, then their outputs can be pooled,
which can result in a highly useful and accurate representation of a specific
feature. Indeed, the pooling of activities of coarse-coded neurons is the gener-
ally accepted account of hyperacuity, in which the accuracy of a perceptual
system is substantially greater than the accuracy of any of its individual
components (e.g., Churchland and Sejnowski 1992).

The coarse coding that is used in the network described can be thought
of as follows: Each hidden unit occupies a different position on the map of
Alberta. When presented a pair of cities, each unit generates an activation
value that reflects a rough estimate of the combined distance from the two
cities to the hidden unit. While each hidden unit by itself generates only a
rough estimate, when all six hidden units are considered at the same time,
a much more accurate estimate of the distance between the two cities is
possible. To demonstrate this, we used multiple linear regression to predict
the distance rating (an integer ranging from O to 10) from the activations
generated in 6 of the hidden units by each of the 169 stimuli that were
presented to the network during training. The regression equation produced
an R? of 0.71 (F[6,163] = 66.81, p < 0.0001). In other words, a linear
combination of the hidden unit activities can by itself account for over 70% of
the variance of the distance ratings. After being trained to solve the problem,
the network, in virtue of the nonlinear transformations performed by the
Gaussian activation functions of its output units, can combine the hidden unit
activities to account for 100% of the distance ratings.
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Discussion

The purpose of the first simulation was to train an artificial neural network to
generate ratings of the distances between pairs of Albertan cities. The inputs
to the network only represented city names; the network was not provided any
information about the actual location of the cities in Alberta. After training
was completed, one question of primary interest was whether the internal
representations of the network were metric.

Several different analyses of the internal structure of the network were
reported above, and all of these analyses converged on an affirmative answer
to this question: the hidden units of the network did indeed develop metric
representations of space. First, two-dimensional MDS analyses accounted for
almost all of the variance in the activation matrix that was created for each
hidden unit. Second, if one assumed that each hidden unit occupied a location
on the map of Alberta, one could find a location for each hidden unit that
produced a high correlation between the connection weights feeding into the
hidden unit and the distances on the map between cities and the position of
the hidden unit. Third, if one replaced the map of Alberta with a customized
two-dimensional space for each hidden unit (a space revealed by the MDS
analyses), near perfect correlations between connection weights and distances
in the space were revealed.

Implications for the hippocampal cognitive map

The strong interest that neuroscientists have taken in the study of spatial beha-
viour and cognitive maps can largely be traced back to the discovery of place
cells in the hippocampus (O’Keefe and Dostrovsky 1971). The properties of
place cells have been used as evidence for the neural basis of a cognitive
map in the hippocampus (O’Keefe and Nadel 1978). This map was argued to
be a Euclidean description of the environment based on an allocentric frame
of reference. In other words, locations in this map were defined in terms of
the world, and not in terms of a coordinate system based upon (and moving
with) the animal. Additional support for this proposal came from the fact that
lesions to the hippocampus produce deficits in a variety of spatial tasks (for
an introduction, see Sherry and Healy 1998). Furthermore, robots that use a
representational scheme based upon the properties of place cells can navigate
successfully in their environment, indicating that the place cell architecture is
a plausible proposal for a cognitive map (Burgess et al. 1999).

One common analogy used by researchers is that a cognitive map is like
a graphical map (Kitchin 1994). “This does not mean that there must be a
region in the brain onto which the environment is physically mapped, but
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rather that there will be a correspondence between input-output behaviours
of the storage and retrieval functions of the two representations” (p. 4). The
aforementioned properties of place cells would appear to support this analogy.
One might plausibly expect that the cognitive map is a two-dimensional array
in which each location in the map (i.e., each place in the external world) is
associated with the firing of a particular place cell.

However, anatomical evidence does not support this analogy. First, there
does not appear to be any regular topographic organization of place cells
relative to either their positions within the hippocampus or to the positions
of their receptive fields with respect to the environment (Burgess et al. 1995;
McNaughton et al. 1996). Second, place cell receptive fields are at best locally
metric (Touretzky et al. 1994). This is because one cannot recover information
about bearing from place cell representations, and one cannot measure the
distance between points that are more than about a dozen body lengths apart
because of a lack of place cell receptive field overlap. Some researchers
now propose that the metric properties of the cognitive map emerge from
the coordination of place cells with cells that deliver other kinds of spatial
information, such as head direction cells which fire when an animal’s head is
pointed in a particular direction, regardless of the animal’s location in space
(McNaughton et al. 1996; Redish and Touretzky 1999; Touretzky et al. 1994).

Interestingly, the hidden units in the PDP network also appear to be
subject to the same limitations that have brought into question the ability
of place cells to provide a metric representation of space. First, because the
hidden units are all connected to all of the input units, the network has no
definite topographic organization. Second, each hidden unit appears to be
at best locally metric. While the input connections can be correlated with
distances on the map, the responses of individual hidden units do not provide
an accurate spatial account of the map. Nevertheless, the fact that the PDP
network could be trained to accurately generate the ratings given in Table 1b
indicates that the responses of these locally metric, inaccurate processors can
be used to accurately represent spatial information about the entire map of
Alberta. This is possible because the network does not base its output on
the behaviour of a single hidden unit. Instead, it relies on coarse coding, and
generates its response from the activity of all six hidden units considered
simultaneously.

One implication of this coarse coding is that spatial relationships amongst
locations in Alberta are being captured by a representational scheme that is
not isomorphic to a graphical map. In particular, if one views the hidden units
as being analogous to place cells, then the PDP network demonstrates that
spatial relationships among 13 different landmarks can be represented by a
system which assigns place cells to only 6 different map locations.
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The reason that this is possible is because the representational scheme
discovered by the network is allocentric, but in a fashion that might not be
immediately expected. Taken literally, the term allocentric means “centred on
another”, but there are at least four distinct kinds of representations for which
this would be true (Grush 2000). In two of these, the locations of objects
are either specified with respect to one object in the environment (an object-
centred reference frame) or with respect to a position in the environment at
which no object is located (a virtual or neutral point of view). The represen-
tation used in the PDP network is allocentric in this latter sense, because the
positions of cities are represented relative to the positions of hidden units,
and the hidden units are not positioned at city locations. However, the PDP
representation extends this notion of allocentric, because city locations are
not encoded with respect to a single virtual location, but instead with respect
to a set of six different virtual positions, all of which have to be considered
at the same time to accurately retrieve spatial information from the network
(i.e., to judge the distance between cities). We call this a coarse allocentric
code.

The discovery of coarse allocentric coding in the network is not
completely surprising, because other network simulations of spatial
processing have developed representations that seem similar. Ghiselli-Crippa
and Munro (2000) trained a network to navigate through a spatial layout of
nodes. When they expressed the representation of a single node as a vector
of hidden unit activities, they found high correlations between distances
between nodes and distances between hidden unit vectors. The notion of a
spatial location being represented as a pattern of activities is central to coarse
allocentric coding. Arleo and Gerstner (2000) used reinforcement learning
to train a simulation of place cells in the hippocampus that was used to
drive a miniature mobile robot. The place cell receptive fields that developed
overlapped one another. Such overlapping is characteristic of coarse coding.
However, to our knowledge, other simulation researchers have not performed
a detailed analysis of hidden unit properties on an individual, connection
weight by connection weight basis of the type that we conducted in Simu-
lation 1. As a result, whether the coarse allocentric code discovered in our
network is equivalent to the representations used in other simulations remains
an open question.

The major hypothesis about the hippocampus that is suggested by the PDP
network is that place cells also implement a coarse allocentric code. As a
result, the place cells need not be organized topographically, because they
don’t represent the environment in the same way as a graphical map. Instead,
locations of landmarks in the environment could be represented as a pattern
of activity distributed over a number of different place cells. If this were
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the case, then in spite of their individual limitations, coarse coding of place
cell activities could be used to represent a detailed cognitive map without
necessarily being coordinated with other neural subsystems.

Simulation 2: Nonmetric spatial judgements

In the Simulation 1, a PDP network was trained to make judgements of
distance that preserved the metric properties of space. When the internal
representations of this network were examined, it was found that they were
basically spatial in nature. Each hidden unit could be assigned a position in a
two-dimensional space, and the weights of the connection that provided input
to a unit represented the distance between the hidden unit and the city asso-
ciated with each city. One surprise about this internal representation was that
accurate spatial responses by the output units of the network depended upon a
coarse allocentric code. Each hidden unit, though spatial in nature, provided
distance information that was inaccurate or distorted. Accurate information
required considering the response of each hidden unit at the same time.

The spatial nature of the network’s internal representations is perhaps not
surprising, given that the network was trained to internalize a metric space.
However, as was noted in the introduction, there does exist a tension between
the metric properties of a representation and the properties of the beha-
viour that the representation mediates. Specifically, is it possible for a metric
representation to mediate nonmetric behaviour? Our discovery of the coarse
allocentric code was exciting because it raised the possibility of a metric
representation that might be flexible enough to mediate spatial judgements
that were not completely metric.

One of the reasons for the rise in the popularity of PDP networks over
symbol-based models is that PDP models degrade gracefully and are damage
resistant (McClelland et al. 1986). To say that a network degrades grace-
fully is to say that as noise is added to its inputs, its output responses
become poorer, but it does not stop responding (Dawson 1998). The model
deals as best it can with less than perfect signals. To say that a network
is damage resistant is to say that as noise is added to its internal struc-
ture (e.g., by damaging connections or by ablating hidden units), its output
responses become poorer, but it still functions as well as it can. Traditional
symbol-based models do not degrade gracefully, and are not damage resistant.

The damage resistance and graceful degradation of PDP networks is due
to the redundancy of their internal representations when they employ coarse
coding. One further advantage that this kind of representation can provide,
which is related to graceful degradation, is generalization. When presented
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with a new stimulus — one that the network was never trained on — a network
often can generate a plausible response, taking advantage of the similarity
between the new stimulus and old stimuli, and the fact that such similarity can
be easily exploited in redundant representations. In fact, if too many hidden
units are used, and if these units start to pay attention to specific stimuli, then
generalization will be poorer. This is one aspect of what is called “the three
bears” problem (Seidenberg and McClelland 1989). This is called the three
bears problem because if the number of hidden units is not just right — if there
are too few or if there are too many — then generalization will suffer.

In the current paper, we were not concerned with generalization of this
particular type. One reason for this was because we were not interested in
making an applied tool that would be presented new stimuli, but instead were
interested in examining the internal representations of a network trained to
accomplish a known task. A second reason was that our pilot tests indicated
that a network with six hidden units was “just right” for this problem —
with fewer hidden units, the network did not converge, and more hidden
units were not required to solve the problem. A third reason was that our
detailed analysis of hidden unit representations in Simulation 1 indicated that
our network was not falling into the three bears problem, because there was
no evidence that individual hidden units were focusing upon specific training
patterns.

However, we were concerned with a different type of generalization — the
generalization of representation type from one problem to another. Specifi-
cally, imagine if the network’s task was changed in such a way that the
distance ratings violated one of the metric properties of space. Would it
be the case that we would observe representational generalization — that
allocentric coarse coding could still be used to represent a solution to the
problem? Or would a change in task result in a completely different represen-
tational approach? Simulation 2 was designed to explore these questions, by
having a network learn to make a set of distance judgements that violated the
minimality principle of metric space.

Method

Problem definition

The problem that the network was trained to solve in the second simulation
was a distance estimation task that was identical to that used in the first
simulation, with the exception that the network was trained to make different
judgements when asked to judge the distance between a city and itself. In the
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first simulation, such judgements obeyed the minimality principle of metric
space, and the network was trained to make a judgement of O when presented
such stimuli. The judgement of 0 reflected the minimality principle, in that a)
the shortest distance in the space was from one location to itself, and b) this
judgement was made for every location when it was compared to itself.

In this second simulation, the minimality principle was violated. For some
of the cities, the network was trained to make a judgement of 2 when rating
the distance of a city to itself (Camrose, Grande Prairie, Lloydminster, Red
Deer, Slave Lake). For some of the other cities, the network was trained to
make a judgement of 1 when rating the distance of a city to itself (Drum-
heller, Fort McMurray, Lethbridge, Medicine Hat). For the remaining cities,
the network was trained to make a judgement of 0 when rating the distance of
a city to itself (Banff, Calgary, Edmonton, Jasper). If one takes the diagonal
entries of Table 1b and replaces the diagonal with the values listed here, then
one has defined the problem for the second simulation.

The logic behind using these values was twofold. First, the point of the
second study was to violate the minimality principle, which is accomplished
by having different and nonzero values in the diagonal of Table 1b, regardless
of what these particular values are. Second, human subjects are more likely
to give higher self-similarity ratings (which would be converted into shorter
distance ratings) to more familiar items (Tversky 1977). So, when we decided
to modify the diagonal entries, we used a rating of O for the four most familiar
Alberta cities, a rating of 2 for the five smallest and least familiar cities, and
arating of 1 for the remaining four cities.

Network architecture

The input unit and output representations in the second simulation were
identical to those used in the first simulation. The only difference between
the two simulations was that seven hidden units were used in the second
simulation. The seventh hidden value unit was added because repeated testing
showed that if only six hidden units were used, then the network would not
converge upon a solution to the problem.

Network training

As before, the network was trained using the modified generalized delta rule
developed by Dawson and Schopflocher (1992). Connection weights and
biases were randomly started in the range from —0.50 to +0.50. The network
was trained with a learning rate of 0.01 and with zero momentum; the order
of pattern presentation was randomized every sweep through the training set.
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The network converged on a solution to the problem (a “hit” for each output
unit for every one of the 169 training patterns) after 2057 sweeps of training.

Results

The main issue of interest in the second simulation was the nature of the
internal representations used by the network to make the distance ratings that
violated the minimality principle of metric space. Given that this network
required one extra hidden unit in comparison to the first, it was possible that
six of its hidden units were identical to the six hidden units in Simulation 1,
and that the seventh hidden unit was unique, and had the task of dealing with
the nonmetric diagonal judgements. A second, more interesting, possibility
is that all seven of the hidden units were all using allocentric coarse coding,
and that this kind of coding was flexible enough to deal with the violation of
the minimality principle. To examine the internal representations used by the
Simulation 2 network, we approached its analysis in the same fashion as we
approached the network in Simulation 1.

Relating the map of Alberta to hidden unit connection weights

Our first analysis involved using the Solver tool in Excel to find a position for
each hidden unit on the map of Alberta, such that this position optimized the
correlation between each unit’s connection weights and the distances between
the unit and the 13 Albertan cities. As was the case in Simulation 1, we found
that a position could be found for each hidden unit that provided a substantial
correlation between distances and hidden units (see Table 4). Furthermore,
from an examination of this table, and a comparison between it and Table 2,
there did not seem to be any indication that any one of the hidden units was
qualitatively different from the other six.

Figure 4 illustrates the positions of the hidden units from Simulation 2 that
were obtained by performing the analysis above. In comparison to Figure 3,
we can see that the hidden units occupy different positions on the map.
However, in both figures the hidden units occupy locations that are not occu-
pied by cities. This property is likely crucial for the allocentric coarse coding
to be able to handle the violation of the minimality principle. By being located
away from cities, every distance feeding into a hidden unit (represented by
connection weights) has to be nonzero.
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Table 4. Results of relating Alberta map distances between cities and
hidden units the values of the connection weights feeding into the
hidden units in Simulation 2

Hidden Unit  Hidden Unit Hidden Unit  Correlation Between
Latitude Longitude =~ Map Distances And
Incoming Weights
HO 50.55 112.99 0.69
H1 54.84 115.17 0.54
H2 54.06 113.14 -0.69
H3 50.02 110.72 0.46
H4 54.51 112.20 -0.76
H5 51.17 115.57 -0.57
H6 52.75 115.44 -0.41
|
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Figure 4. The locations of the seven hidden units from the second simulation on the map of
Alberta. These locations optimized the correlations between hidden unit connection weights
and distances from the cities to the hidden units.
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Table 5. Results of relating connection weights to city distances from the MDS
solutions obtained from the activity matrix for each hidden unit in Simulation 2.
The table provides the maximum correlation, as well as the coordinates of the
hidden unit in the space that produces this maximum correlation

Hidden Unit  X-Coordinate Of X-Coordinate Of = Correlation Between
Hidden Unit Hidden Unit MDS Distances And
Connection Weights

HO —4.08 -0.98 -1.00
H1 -0.27 -0.03 0.84
H2 0.14 -0.11 0.87
H3 0.00 0.12 0.80
H4 0.36 -0.02 0.58
H5 0.38 -0.48 -0.93
H6 -0.90 -0.35 0.88

Relating connection weights to hidden unit MDS spaces

As found in Simulation 1, while the correlations in Table 4 are substantial,
they are far from perfect. To test the possibility that connection weights
were more related to distances in a “distorted” two-dimensional space, we
repeated the second analysis that was carried out in the first study: we took
the activity matrix for each hidden unit, performed MDS on each activity
matrix to identify a space for each hidden unit (as well as the coordinates
for each city in this space). We found, once again, that the two dimensional
MDS solution accounted for almost all of the variance in each data matrix (R?
=0.981, 0.991, 0.992, 0.998, 0.992, 0.996, 0.998 for the analysis of hidden
units 1 through 7). We then used Solver to find the location, in its own space,
for each unit that optimized the correlation between connection weights and
city distances. As was the case in Simulation 1, this analysis led to very large
correlations, which are presented in Table 5.

Coarse coding from hidden unit activations to distance ratings

In Simulation 1, an argument for coarse coding was made because the correla-
tions between individual hidden unit activities and ratings were small, but the
set of all activities combined were strongly related to distance ratings. A very
similar circumstance was found in Simulation 2. When hidden unit activities
were correlated with distance ratings, the correlations (for units HO through
H6 respectively) were —0.51, 0.22, -0.06, -0.03, -0.08, 0.06, and 0.17.
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However, when the activities of the seven hidden units were combined in
a regression equation that predicted distance ratings (including those ratings
that violated the minimality principle), the equation produced an R? of 0.74
(F[6,163] = 66.59, p < 0.0001). In other words, a linear combination of
hidden unit activities accounts for over 70% of the variance in the ratings.
When this linear combination is transformed by the nonlinear activation func-
tions in the output units, the result is near-perfect prediction (i.e., a converged
network).

Coarse coding for violations of minimality

The analyses to this point indicate that the network that was trained in Simula-
tion 2 developed similar types of internal representations to those found in the
Simulation 1 network. Furthermore, there does not appear to be any evidence
that the second simulation employed one hidden unit as a “specialist” with
the task of dealing with the subset of ratings that represent violations of
the minimality principle. To provide one additional test of this, we took the
diagonal entries of the modified version of Table 1b and correlated them with
the connection weights feeding into each hidden unit. Our previous analyses
have shown that these connection weights represent distance information.
If one of these units uses this information to handle minimality violations,
then one would expect that there should be a strong relationship between its
incoming connection weights and these violations.

The correlations that were computed for each of the seven hidden units
were 0.36, —0.41, 0.22, —0.32, 0.30, —0.12, and —0.32. There are two obser-
vations to make about these correlations. First, none of them is large enough
to indicate that one hidden unit is capable of dealing with the violations of
minimality on its own. Second, many of the hidden units have correlations
that are roughly the same size. Together, these observations indicate that
no one hidden unit is being used to handle the violations of minimality.
Instead, these violations appear to be dealt with in the same manner as the
other ratings in the matrix — by coarse coding that involves all seven hidden
units.

Discussion

In Simulation 1, a PDP network was trained to make ratings of distances
between cities that were consistent with the minimality principle for metric
space. This was accomplished by having the network trained to generate a
rating of O whenever asked to judge the distance between a city and itself. In
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Simulation 2, a PDP network was trained to make ratings that violated the
minimality principle. When asked to judge the distance between a city and
itself, the network was trained to generate a rating of O for four cities, a rating
of 1 for four other cities, and a rating of 2 for the remaining five cities.

When the minimality constraint was violated, the ratings task became
more difficult. In particular, the problem could not be solved when the
network had six hidden units (the number used in Simulation 1). An addi-
tional hidden unit was required for the network to converge to a solution to
the problem.

In spite of the task being more difficult, though, there was no evidence
that the network created a qualitatively different representation to solve the
problem. Once again, the network used allocentric coarse coding to make
distance judgements. Each hidden unit could be considered as occupying
a position on the map of Alberta, and the weights feeding into each unit
were correlated with the distances between the hidden units and the Albertan
cities. The responses of individual hidden units provided relatively inaccurate
sensitivity to distance information. However, when the responses of all seven
hidden units were pooled, very accurate distance judgements were possible.
Finally, there was no evidence that any one of the hidden units had a special
role in making the subset of judgements that defined the violation of the
minimality principle.

General discussion

In the introduction, we briefly reviewed three different research areas related
to spatial cognition: similarity spaces, mental imagery, and cognitive maps.
For each of these areas, we argued that there existed a tension between beha-
vioural regularities and representational properties. For example, consider the
relationship between similarity judgments (which are strongly related to the
distance judgments used in the current study) and representational proposals.
In the beginning, similarity judgments were assumed to obey the metric
properties of space, and as a result researchers proposed that these judg-
ments were mediated by a metric spatial representation (Romney et al. 1972;
Shepard et al. 1972). However, later research revealed that the judgments
that subjects made were not always metric. What were the representational
implications due to these behavioural observations?

One alternative was to completely abandon metric spatial representations,
and to adopt representations that were less structured. For example, some
researchers replaced the similarity space with a proposal in which concepts
were represented as sets of features, and nonmetric behavioural regulari-
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ties emerged from the procedures used to compare feature sets (Malgady
and Johnson 1976; Ortony 1979; Tversky 1977; Tversky and Gati 1982).
This approach has the advantage of being able to account for nonmetric
behavioural regularities. However, it has disadvantages as well. The ability
to fit nonmetric behaviour emerges from manipulating constants in feature
comparison equations. These constants provide additional degrees of freedom
that must be fit from study to study to predict human judgments. Because of
these additional degrees of freedom, this kind of theory is less powerful — less
constrained — than the similarity space that it replaced (Pylyshyn 1984).

A second alternative was to modify the similarity space proposal in such a
way that this metric space could mediate nonmetric behaviours. For instance,
Krumhansl (1978, 1982) modified the similarity space by including new rules
that measured the density of points in the space, where density reflected
the number of neighbours that were close to a point in the space. Krum-
hansl included density calculations in addition to distance in the rules that
were used to compare different points in the space. The inclusion of density
permitted nonmetric judgments to emerge from the space. This approach has
the advantage of maintaining some of the attractive properties of the simi-
larity space. However, the density calculations also introduce new degrees of
freedom that reduce the explanatory power of theory.

A third example is provided in the current manuscript. Rather than
analyzing behavioural regularities in detail, and proposing a representational
story that attempted to capture these regularities, we took a synthetic
perspective. A model based on relatively simple building blocks, with few
underlying representational hypotheses, was trained to generate metric spatial
judgments. Once the model had been synthesized, we took great pains to
analyze its internal structure. The result was that we found a particular kind of
representation, allocentric coarse coding, that would not have been an obvious
proposal had our starting point been the analysis of behaviour. A second study
demonstrated that this kind of representation was also capable of mediating
spatial judgments that violated the minimality principle of metric space. In
other words, the synthetic approach utilized in the current paper has shown
how a connectionist representation can account for both metric and nonmetric
regularities. Our current research involves taking a more detailed look at
allocentric coarse coding in order to get a clearer picture of its advantages
and disadvantages.
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