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Detailed computational modeling of human memory

has typically been aimed at either short-term (working)

memory or long-term memory in isolation. However,

recent research highlights the importance of inter-

actions between these systems for both item and

order information. At the same time, computational

models of both systems are beginning to converge onto

a common framework in which items are associated

with an evolving ‘context’ signal and subsequently

compete with one another at recall. We review some

of these models, and discuss a common mechanism

capable of modelling working memory and its inter-

action with long-term memory, focussing on memory

for verbal sequences.
Introduction

The idea of short-term memory (STM) and its relationship
with long-term memory (LTM) has long intrigued psychol-
ogists. Much of the short-term organization of behaviour
requires some limited memory capacity to support on-line
processing, as in the concept of ‘working memory’ [1].
Equally, there is a need to filter on-going experience and
buffer this information so as to organize its efficient entry
into long-term memory [2–4]. The distinction between
STM and LTM is supported by many sources of evidence.
Behaviourally, immediate serial recall (ISR) of a list of
words is sensitive to their phonological similarity, but not
their semantic similarity, whereas the reverse is true for
memory after a delay of more than a few seconds [5].
Neuropsychologically, there is a double dissociation
between organic amnesia associated with the hippo-
campus and related systems, and short-term buffer
disorders associated with neocortical damage: amnesic
patients present with impaired LTM and preserved STM
[6,7], whereas short-term buffer disorders show the
reverse pattern [8]. Physiologically, STM is often thought
of as maintained neuronal firing [9,10], or short-term
potentiation of synaptic connections [11], whereas LTM is
thought of as long-term potentiation of synapses [9].
However, the dissociation between STM and LTM in no
way denies the link between them: each is clearly
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important for the other and how they interact is a topical
question in memory research [12,13].

One of the clearest examples of the dissociation
between STM and LTM comes from the Hebb repetition
effect, in which repeated presentation of a digit sequence
for ISR results in gradual learning of that sequence, even
though presentation and recall of other sequences
intervenes between the repetitions [14]. Hebb concluded
that there must be some change in LTM from a single trial.
Milner and colleagues subsequently found that the Hebb
repetition effect for lists of digits or spatial locations
depended on the integrity of the medial temporal lobe
(more specifically, on the left and right hippocampi,
respectively), whereas ISR of the lists did not [15]. We
note, however, that the relationship between STM and
LTM is stimulus specific. Other stimuli, such as the layout
of a spatial scene [16,17], appear to require the hippo-
campus even over very short delays [13].

In this article, we review a combination of recent
computational and empirical investigations of verbal
memory that are beginning to address the interrelation-
ship of STM and LTM. We outline recent progress in
modeling verbal STM in terms of separate mechanisms for
order and item information, where order is controlled by
some form of context signal, and argue that independently
developed models of LTM are converging on a similar
framework. Finally, we suggest that the Hebb repetition
effect provides a powerful vehicle for developing and
testing models of the relationship between STM and LTM.

Computational modeling of verbal STM

The multi-component model of working memory proposed
by Baddeley and Hitch [1] and developed by Baddeley [5]
is described in Box 1. The phonological loop component
gives a simple account of the sensitivity of ISR of verbal
items to the items’ spoken characteristics and interference
from concurrent articulatory suppression. However, the
phonological loop requires translation into a quantitative
lower-level model to address the actual mechanism by
which serial order is retained.

Serial order: context signals and competitive queuing

The simplest mechanism for storing a sequence of items in
order is to associate one directly to the next (‘chaining’).
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Box 1. The Baddeley and Hitch (1974) model of working

memory

Three separate but interacting limited capacity components of

working memory were assumed: a central executive responsible

for control processes and two slave systems providing modality-

specific buffer storage (see Figure I). One buffer store is specialized

for visuo-spatial information, the other for verbal information. All

three subsystems are separate from LTM. The verbal buffer acts as a

‘phonological loop’ supporting immediate serial recall or rehearsal,

such as when remembering a telephone number for long enough to

be able to dial it. An early metaphor for this buffer was that of a

closed loop tape recorder in which stored speech sounds undergo

rapid decay and can be refreshed by a control process of subvocal

rehearsal. This account explains the poorer recall of sequences of

similar sounding items (the ‘phonemic similarity effect’), the

relationship between memory span for words and how fast

the words can be subvocally rehearsed (the ‘word length effect’),

and the abolition of this word length effect when subvocal rehearsal

is prevented by concurrent ‘articulatory suppression’. Subvocaliza-

tion was also assumed to be required to recode visual stimuli into

verbal form, so as to enter the phonological loop, explaining why

articulatory suppression removes the phonemic similarity effect for

visual but not auditory items (see [5] for details).

Growing evidence of additional links between working memory

and LTM, for example, the improvement in ISR associated with

chunking based on previously acquired knowledge, recently

caused Baddeley [12] to suggest the addition of an ‘episodic

buffer’ to the model.
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Figure I. The elements of working memory originally proposed by Baddeley and

Hitch [1] and developed later by Baddeley [5] are shown (white boxes), together

with their interactions with long-term memory (green box), taken from [12].

Dashed lines show the additional ‘episodic buffer’ more recently suggested by

Baddeley [12].
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However, although chaining works well for a wide range of
memory phenomena [18,19], it is inconsistent with the
pattern of errors in ISR [20,21]. For example, in a chaining
model, once an item is omitted, it is unlikely to be
retrieved until the end of the list, if at all, whereas order
errors involving transposition of nearby items are very
common in ISR [22–24]. Even more strikingly, in ISR of
lists of items of alternating phonemic similarity (e.g. Q-D-
R-B-N-P), worse recall of the similar sounding items (D, B,
P) does not affect performance on the dissimilar interven-
ing ones [23,25].

Most alternatives to chaining involve associating item
information to some kind of ‘context’ signal that varies
with experience or time, coupled with a mechanism for
selecting one item at a time during retrieval. One of the
earliest, the ‘perturbation’ model of Estes [21], assumes a
direct encoding of the position of each item that is subject
www.sciencedirect.com
to perturbation (changes by 1 position) over subsequent
time steps. In more recent models a context representation
evolves with the passage of items [11,22,26–28] but is not
itself perturbed. Rather, errors occur in the way in which
item information is retrieved from context. Various forms
of context signal have been proposed, such as a stochastic
variation in time [9,22], a moving window of activation
[11] or a decaying ‘start node’ and increasing ‘end node’
[26,27].

The majority of models [19,22,24,29,30] also converge
on a type of selection mechanism known as ‘competitive
queuing’ ([26,31], and reviewed in [32]). In competitive
queuing, items are active in parallel and the most active is
output; this item is then inhibited to allow the next most
active to be selected, and subsequently recovers from
inhibition. Such a mechanism generates patterns of
transposition errors typical of ISR when noise is intro-
duced into item activations, and naturally incorporates
response suppression. It is strikingly consistent with
single unit responses in primate prefrontal cortex (where
cells representing different forthcoming actions are active
in parallel, the most active corresponding to the soonest-
to-be-performed; see [32]).

An insight into the nature of the context signal comes
from ‘intrusion errors’ in ISR: items from a previously
presented list that are erroneously retrieved in the current
list. Intrusion errors tend to occur at a similar position in the
current list to their position in the previous list [33].
Experiments using lists of variable length [34] show further
that intrusions tend to maintain their position relative to
both the start and the end of the list. Thus, if order
information is maintained by association of items to a
context signal, this signal must reflect position-within-list
relative to both ends, as in the start–end models [26,27] and
an oscillator implementation of positional context [35]
inspired by a model of syllabic parsing [36], see also [28].
Neurophysiological evidence of positional coding has been
seen in primate supplementary motor cortices (e.g. cells
responding between the second and third action in a
sequence, irrespective of the identity of the actions [37]).

One successful model of ISR [24] does not include
positional cues. In this model an item representation is
activated at presentation, increases in activation with each
new item that is presented, and then decays with time
during retrieval. It can be regarded as using a context
signal consisting of a single node to which items are
associated at presentation by connections that increase in
strength with each new item presented. This model (as
with [11] with context signal removed, see Box 2),
demonstrates adequate ISR, including effects of phonemic
similarity, articulatory suppression etc. However, non-
positional accounts cannot explain typical patterns of
intrusion errors in ISR or temporal grouping effects (see
below).

Regardless of how they deal with serial order, most
models of verbal STM require that output involves
accessing items’ phonological representations. Effects of
noise at this stage generate phonological similarity effects,
and decay in the strength of association between items
and context with increasing duration of rehearsal or recall
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Box 2. Modeling verbal working memory with a context signal and competitive queuing

We describe the operation of one model of ISR (Figure II; see [11] for

details, also [22,24,27,28,30]). Item nodes are connected to their

corresponding input and output speech representations (modelled as

phonemes for simplicity), and to a context/timing signal, via

connections capable of large short-term (decaying) modification and

smaller (incremental) long-term modification. Corresponding input

and output phonemes directly activate each other. Items are selected

by ‘competitive queuing’ at each step of presentation and retrieval;

that is, the most strongly activated item is selected, subsequently

inhibited, and then slowly recovers from inhibition.

Presentation of an auditory item activates the corresponding input

phonemes and thence output phonemes and a single item node

(selected by competitive queuing), whilst the context signal changes

by a fixed amount, and connection weights are modified. Changes to

little-used connections (e.g. context-item connections for a novel list)

are dominated by short-term modification, whereas well-used

connections (e.g. item–phoneme connections for familiar words)

also have a significant long-term component.

At retrieval, the context signal is reset, and reproduces the changes

made during presentation: changing by a fixed amount with each

recalled item. Item nodes are re-activated via their context-item

connections, the most active is selected and activates its output

phonemes, whose activation feeds back to item nodes via the input

phonemes. Output corresponds to a final selection by competitive

queuing, while item nodes receive both phonemic and contextual

input. This stage is assumed to be noisy: causing errors in which as-

yet-unrecalled items associated to similar context or phoneme

representations may replace the target item. See [24] for further

discussion of the need for a second (phonological) output stage.

Many aspects of the model have an obvious correspondence to the

concept of a phonological loop. Rehearsal (simulated as repeated

retrievals) serves to refresh the decaying short-term connection

weights. The activation of the input phonemes by the output

phonemes during rehearsal or visual input corresponds to hearing

one’s inner voice. The structure of the model also captures the

patterns of impairment due to articulatory suppression (modelled as

disrupting the output phoneme representation and hence also the

input phoneme representation) and observed in the various types of

short-term memory patient.

The inclusion of a context signal, separate from phonological

representations, predicts a dissociation between effects of temporal

grouping and Hebb repetition on the one hand, and on the other,

effects traditionally associated with the phonological loop, such as

phonological similarity, word length and articulatory suppression.

Indeed this is almost a double dissociation, as ISR itself is only weakly

dependent on the context signal - the recovery of items from inhibition

during presentation alone allows them to be selected in order at

retrieval with only a slight drop in span [11]. In addition, the inclusion

of long-term as well as short-term learning allows effects of item and

list familiarity to be addressed.

TRENDS in Cognitive Sciences 

Context / timing Input phonemes

Output phonemes

 

Acoustic input buffer

Visual polysyllabic non-words

Presentation modality
Auditory suffix
Articulatory suppression

Item familiarity
Phonological similarity

Word length
Articulatory suppression

Hebb repetition
Temporal grouping
Serial order intrusions

Visual words
and monosyllabic
non-words

Items,
Competitive queuing

Figure II. Outline model of the phonological loop. Components of the model are shown in black boxes. Dotted arrows show short- and long-term modifiable connections,

full arrows show inputs to the model and the fixed one-to-one connections between input and output phonology. Grey text indicates some of the experimental effects

captured by the model next to the relevant part of the model. Adapted from [11].
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generates word length effects. Box 2 gives further details
for one of these models [11].

In summary, models of verbal STM converge on
separate mechanisms for serial ordering and retrieving
the phonological characteristics of items. Although com-
petitive queuing alone is sufficient to generate serially
ordered output, intrusion errors (and temporal grouping;
see below) suggest that this process is cued by some form
of context signal containing positional information.
Serial order and rhythm

One important influence on ISR that appears to be
independent of articulatory or phonological factors is
provided by the temporal rhythm with which verbal
items are presented. Performance is enhanced by pre-
senting items with a specific temporal grouping, as
www.sciencedirect.com
opposed to evenly-spaced presentation [38]. This effect is
stronger for auditory than visual presentation, is charac-
terized by mini U-shaped serial position curves for each
group, and by a decreased incidence of order errors
between items that occupy different within-group pos-
itions [38,39]. When the number of items or duration of
each group is varied, the patterns of order errors indicate
that, as for within-list position, within-group position is
encoded relative to both the start and the end of the group
([34,40]; see [35] for a model).

The effects of temporal rhythm on ISR are independent
of items’ phonemic similarity and word length [41],
consistent with the separation between item (phonological)
and order (contextual) components. They can be readily
accommodated in models that associate items to context
by making the context signal multi-dimensional – one
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dimension tracking position within list and another
tracking position within group [11,41]. The second dimen-
sion reduces the overall similarity between the context
representations for all pairs of items excepting those with
the same within-group position. We argue below that
grouping is important not only for specifying the nature of
the context signal in STM, but in identifying the context
signal as a crucial link in STM–LTM interactions.

Context and models of long-term memory

In parallel to the working memory models reviewed above,
several models of LTM propose that the memory trace of
an item’s presentation includes a time-tag for use in
subsequent recall [42–44]. Thus these models effectively
also use item–context associations, but often with a
different context signal for each list [9,45–47]. These
models usually focus on free recall of supra-span lists of
items. We note that the use of a context representation at
the higher level of lists is consistent with the lower level
use of context states that vary within lists or sub-groups of
a list discussed above. Indeed these ideas have also been
used at the syllable level [29], and some models attempt to
capture effects of learning at syllable and item levels by
combining them hierarchically [30].

Another approach to modelling both LTM and STM is
provided by ‘temporal distinctiveness’ theories. A recency
effect corresponding to better recall of the most recently
presented items is found in both immediate free recall
(where it is usually regarded as reflecting STM) and under
‘continuous distractor’ conditions (in which each item is
followed by a distractor task sufficient to wipe out the
contents of STM). These models assume that the
probability of correctly remembering an item relates to
the distinctiveness of its presentation time from the
presentation times of other items. Again, they can be
implemented in terms of association to a slowly time-
varying context [44,46,48–50]. Distinctiveness models
capture a significant continuity between STM and LTM
but at the same time tend to ignore the many dissociations
between these two systems. Our argument here is that we
need an account that captures both sets of features.

One potentially important difference between LTM and
STM concerns item-to-item (‘chaining’) associations. In
contrast to ISR, there are signs that item-to-item
association does play a role in LTM, such as the forward
bias in free recall (one item is more likely to lead to the
next item than the preceding one). This observation led to
the ‘temporal context model’ (TCM) [49]. Again, item
representations are associated with context represen-
tations such that a given item will be retrieved according
to the similarity between the context at retrieval and that
associated with the item. However, unlike the STM models
above, in which context representations evolve indepen-
dently, the context representation is derived from the
items themselves: becoming a recency-weighted sum of
the context arising from each item (see also [19]). After
presentation of the list the context vector will be most
similar to the most recent items, producing the well-
known recency effect. In addition, when an item is
presented it affects the context vector to which subsequent
items are associated. Thus the recall of a given item
www.sciencedirect.com
increases the likelihood of retrieval of immediately
subsequent items in the list (by making the context vector
more similar to its state when those items were
presented), causing the observed forward bias in retrieval.

An alternative to the TCM model [9] simply assumes a
linear set of context units on which the location of the
single active unit performs a random walk biased in one
direction. Again, items are retrieved via associations to
the context units, whereas the context signal continues to
walk from its final state (producing long-term recency)
and then from its initial state (retrieving items from the
start with a forward bias). Partial separation of the
mechanisms behind STM and LTM phenomena, as in
[9], is advizable given the many qualitative differences
between them.

In summary, models of LTM typically involve forming
associations between items and their context, suggesting a
point of correspondence with models of STM. However,
distinctiveness models tend to overplay the degree of
similarity. In our view the different nature of the context
representations in models of LTM compared with models
of STM (e.g. the inclusion of item information in the TCM)
implies that a transition occurs with repeated experience
of lists or with increasing list-length. The nature of this
transition is likely to be an important factor in the passage
from STM to LTM and may correspond to ‘chunking’, in
which short-term representations become permanently
grouped together.

Interactions between working memory and LTM

Although ISR is often discussed in terms of the phonolo-
gical loop alone, it shows strong influences of LTM. For
example, familiar words are better recalled than unfami-
liar words [51], and invented nonwords are harder to
recall than words [52]. These and other influences of
language knowledge on ISR exemplify the link from LTM
to the phonological loop in Box 1, and provide strong
constraints for modelling. For instance, unlike ISR,
immediate serial recognition shows virtually no effect of
lexicality [53], indicating that item and order information
have separate links to long-term memory.

The reverse link, from working memory to LTM, is
most obvious in the role of the phonological loop in long-
term learning of novel word forms, reviewed in [54].
Thus, individual differences in verbal ISR in children
predict their scores on vocabulary tests, and the
phonological short-term memory patient PV was unable
to learn non-words despite showing normal learning in a
corresponding task involving words. Convergently,
normal adults’ learning of novel word forms is much
more sensitive to word length, phonemic similarity and
articulatory suppression than their performance on
corresponding tasks involving words. A second role for
the phonological loop in long-term learning concerns the
order of familiar items, for example, in learning a
nursery rhyme or telephone number through repeated
exposure, studied experimentally as the Hebb repetition
effect described earlier. An important result here is that
the rate of learning in Hebb repetition is sensitive to
manipulations of temporal grouping, but not articulatory
suppression or phonological similarity (which we noted
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Box 3. Modeling Hebb repetition and temporal grouping

with context/timing signals

The Hebb repetition effect tells us about the nature of the interaction

between STM and LTM in ISR. Because the effect is observed with

familiar items (e.g. digits), learning must concern the serial order of

the repeated list. Further, the effect is weaker when each presen-

tation of the repeated list has a different rhythm [59], and, for familiar

items, is unaffected by their phonemic similarity or by articulatory

suppression (Hitch, Flude and Burgess, unpublished data), even

though both factors disrupt ISR. This pattern is consistent with Hebb

repetition occurring primarily through the long-term context-item

connection weights in a model like that in Box 2 (in which the context

signal is sensitive to rhythmic grouping). However, the long-term

learning of different lists would interfere with each other (see [66])

unless a specific context signal is developed for each one as it

becomes familiar. To do this we modified the model (Box 2) to

include multiple context sets. For all potential context sets, the

match between the long-term context-item connections and the

presented item is calculated for successive items in the list. After

each item, context sets whose running average match falls below a

threshold value are discarded. The best-matching surviving context

set remains to control recall, and if none survive a new set is

recruited. Modification of the long-term connection weights of

surviving context sets during presentation and recall causes them

to become even better matches. This model successfully captures

the pattern of data for Hebb repetition (Hitch, Flude and Burgess,

unpublished data), and predicts some new effects, such as the

capture of a context set by repeated sequences whose ending slowly

changes.
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above do affect the learning of novel word forms) (see Box
3). Again, this is consistent with the idea that item and
order information are not only distinct within STM but
also have separate links to LTM (but see [55] for a model
of ISR which does not explicitly make this separation, but
nonetheless captures effects of long-term learning such
as the bigram frequency effect).

In summary, any account of the interaction between
STM and LTM should reflect the apparent dissociations
between learning mechanisms for familiar and unfami-
liar verbal materials, and between item and order
information. The acknowledgement of multiple indepen-
dent links between STM and LTM for different kinds of
information is reflected in Baddeley’s addition of a
multi-modal ‘episodic buffer’ to the working memory
model ([12], and Box 1). We tentatively interpret the
link between language knowledge and the phonological
loop as involving item information, and that between
the episodic buffer and LTM as involving order
information in the form of a context signal. We note
that serial order effects in STM for non-verbal
sequences resemble those in corresponding verbal
tasks [56], consistent with a multi-modal capacity for
serial ordering. However, we shall see that attempting
to model the interaction between STM and LTM in more
detail raises questions for any simplistic distinction
between order and item information.
Modelling the interaction between WM and LTM

The different timescales of synaptic potentiation, includ-
ing ‘long-term potentiation’, which seems to last for as
long as can be measured [57], and ‘post-tetanic poten-
tiation’, which lasts for a few seconds [58], suggests
modelling STM and LTM via connections with both
www.sciencedirect.com
short- and long-term plasticity [11]. Thus, whereas
short-term (decaying) connection weights mediate the
association between item nodes and context in ISR of a
novel sequence, the Hebb repetition effect results from a
longer-lasting cumulative association, and residual associ-
ations from previous lists produce position-specific intru-
sions in ISR. This kind of architecture correctly predicts
patterns of interaction between experimental manipula-
tions in the Hebb repetition task (Box 2). Similarly, the
connection strengths between item nodes and input/
output phonology would have a larger long-term com-
ponent for words than non-words, explaining effects of
item familiarity in ISR [11].

However, to properly model the learning of phonology,
one should include its timing, effectively using competitive
queuing at both list [22] and item [29] timescales (see also
[30]). Similarly, to model the learning of lists properly
requires models of working memory to have multiple
context signals. If so, an existing context signal with long-
term connections that match a presented list would be
able to control retrieval of the list and, over repetitions,
become better matched to it – effectively storing the order
information it represents (see Box 3). The mechanism for
finding the best-matching context signal during sequen-
tial presentation of a list highlights the importance of the
familiarity of the start of the list for Hebb learning to occur
[59,60]: an interesting parallel with the ‘cohort’ model of
spoken word recognition [61] and the learning of new
categories in Adaptive Resonance Theory (reviewed in
[62]). As noted earlier, a more realistic computational
model may be possible in which a hierarchy of context
signals deals with ordering at different levels of represen-
tation, from phonemes through words to groups or lists. In
such models, the matching process should find the highest
level in the hierarchy at which a good correspondence can
be found, as in the Pandemonium account of perceptual
recognition [63], thus providing a potential account of
chunking.
Conclusion

The interaction between working memory and LTM is a
topic of much current interest, and computational models
will be required for a quantitative understanding to
emerge. Here, we have discussed the mechanisms relating
STM and LTM for verbal items (see [64,65] for examples of
similar approaches to spatial memory). We have shown
how models of working memory that involve short- and
long-term plasticity can explain some of the effects of STM
on long-term learning and of LTM on immediate recall. We
have argued that models of STM and LTM might fit within
a common framework whereby associations are formed
between states of a context signal and representations of
items. This suggestion raises many questions (see Box 4).
Within these models, hierarchical use of context signals
over different timescales potentially enables modelling of
both immediate memory and long-term learning at the
levels of syllables, items, chunks and lists, including the
learned familiarity of words and of oft-repeated sequences
of words.
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Box 4. Questions for future research

† How should temporal or positional accounts of context in STM be

combined with accounts of LTM in which context depends on the

items themselves (as in the TCM [49])? For example, is the rate of

change or distinctiveness of the various sources of context

important, such that, for very long lists, context based on the

rhythm of presentation alone is not distinctive enough – requiring

item information to be included.

† Does chaining begin to occur as lists are repeated in STM

experiments, indicating a shift to a TCM-like [49] use of context

(there are hints of this in [60])?

† Which aspects of the context signal come from the medial

temporal lobe? The Hebb repetition effect (but not ISR) seems to

depend on the hippocampus [15], provision of a context signal is

one way to interpret the hippocampus as providing a dynamic

index into LTM [4,67,68] and the physiology of the hippocampal

formation may support slowly-varying patterns of activity reflect-

ing temporal [65,69,70] or spatial context [65,71].

† Does the additional implication of the context signal in short-term

serial order and temporal grouping effects relate to recent findings

linking the medial temporal lobe to some aspects of sequential

processing [72]?

† How do the oscillatory context signal/competitive queuing models

[11,28,29,35,36] relate to the temporal mechanisms proposed for

working memory [73] and long-term encoding of sequential

information in medial temporal lobe involving the theta and

gamma rhythms of the EEG [74]?

† Do the separate mechanisms for long-term learning of item and

order information correspond respectively to the separate links with

LTM of the phonological loop and the episodic buffer (see Box 1)?
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