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Abstract -- Perceptrons are typically viewed as being an artificial neural network that 
embodies the Rescorla-Wagner model of learning.  One of the important properties of the 
Rescorla-Wagner model was its prediction of the overexpectation effect.  However, we 
show below that a typical perceptron is not capable of generating this effect.  This result 
brings into question assumed relationships between artificial neural networks and models of 
animal learning. 
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1. Introduction 
 

One of the most theoretically important effects in associative learning is the overexpectation effect.  The 
effect is produced when two conditioned stimuli (CSs), A and X, are independently paired with a given 
unconditioned stimulus (US) until asymptotic learning occurs, and then A and X are presented in compound and 
paired with the US.  The result is that responding to A or X is reduced following AX-US pairings relative to a 
control condition in which no compound training is given.  This result is intuitively surprising because A and X 
apparently lost associative strength despite continued reinforcement during the compound training. Nevertheless, 
overexpectation effects have been found in studies on Pavlovian fear conditioning in rats [1-3], appetitive 
conditioning in rats [4, 5] and autoshaping with pigeons [6].  Moreover, the effect can be reversed by naloxone 
injections, suggesting that it is modulated by the opioid system [7].    

Although counter-intuitive, the overexpectation effect was predicted by the Rescorla-Wagner model [8].  
Indeed, this effect, together with other effects such as blocking [9], provided strong support for the assumption 
that the effect of reinforcement on learning is relative to the organism’s expectations of reinforcement.  The 
notion that learning depends on the discrepancy between anticipated and obtained reinforcement is a key 
assumption of the Rescorla-Wagner model. This assumption is formalized in the Rescorla-Wagner equation, 
which defines the change in associative strength (∆VA ) of some CSA as: 

∆VA = k(λ - VSUM)                                                          (1) 

In this equation, k is a learning rate parameter (e.g., reflecting the salience of the stimuli), λ is the maximum 
associative strength that can be supported by the UCS, and VSUM is the total amount of associative strength for 
all stimuli that are present. The change in associative strength of any CS presented on a trial can have a positive 
or negative value.  In the case of overexpectation, A and X are both trained to asymptote in the first phase and 
hence V for each would approximate λ. When A and X are subsequently presented in compound, their 
associative strengths are summed and hence Vsum exceeds λ and the change will be negative. Conceptually, the 
two stimuli together over-predict the US.  Accordingly, decreases in associative strength will occur until Vsum 
equals λ.  This will result in reduced responding to either A or X alone in the test phase. Although subsequent 
theories have been able to account for this overexpectation effect (see [1]), the direct prediction of this effect by 
the Rescorla-Wagner model has been theoretically important. 

The Rescorla-Wagner model’s prediction of the overexpectation effect is also theoretically important 
toother formal accounts of learning.  There has been a growing interest in using artificial neural networks to 
study associative learning [10].  In particular, one type of artificial neural network, a perceptron, is viewed as 
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being equivalent to the Rescorla-Wagner model [11, 12].  This paper examines this putative equivalence in the 
light of empirical data.  In particular, we show below that a typical perceptron is not predicted to generate the 
overexpectation effect.  This raises important questions about the relationships between artificial neural networks 
and theories of animal learning. 

 
2. Perceptrons, Associative Learning, and Overexpectation 

 
The perceptron is a simple artificial neural network (ANN).  It consists of a set of input units that are used 

to represent stimuli.  For example, one input unit could be associated with conditioned stimulus 1 (CS1), and 
would be turned on if CS1 was present, and turned off if CS1 was absent.  Connections with modifiable weights 
permit the input units to send signals to one or more output units.  As a result, a connection weight is analogous 
to the associative strength between a conditioned stimulus and a conditioned response. 

An output unit in a perceptron sums all of its incoming signals to compute its net input.  It then applies a 
nonlinear transformation -- the activation function -- to the net input.  For example, when this nonlinear 
transformation is defined by the step function, the net input is compared to a threshold.  If it exceeds the 
threshold, then the output unit generates a response of 1.  Otherwise, it generates a response of 0. 

Other activation functions, such as the sigmoid-shaped logistic equation, can also be used to define the 
nonlinear transformation of net input: 

f(neti) = 1 / (1 + exp (-neti + θj))                                                  (2) 

In this equation, f(neti) is the activation being calculated for output unit i, neti is the net input for that output unit 
(i.e., the sum of the weighted signals from the input units), and θj is called the bias of the output unit.  When the 
net input to the logistic equation is equal to the bias (i.e., equal to θj), the activity that is generated is equal to 0.5.  
Because of this, it is typical to consider the bias of the logistic activation function as being analogous to the 
threshold of the step function. 

Perceptrons are trained via supervised learning, in which a stimulus pattern is presented to the input units, 
and the perceptron responds using its existing connection weights.  Error is calculated by comparing the 
observed output and the desired response, and is then used to adjust the connection weights to ensure that error is 
reduced.  This process is repeated for another stimulus, and continued iteratively until the perceptron responds 
correctly to every stimulus. 

The general learning rule for a perceptron is 

∆wij = η(tj – aj) ai                                                       (3) 

where ∆wij is the change in the weight of the connection between input unit i and output unit j, η is a learning 
rate that will ordinarily range between 0 and1, (tj – aj) is the error calculated for output unit j, and ai is the 
activity of input unit i.  If the error term indicates that an output unit has turned on when it should have turned 
off, then Eq.(3) will adjust the weight to decrease net input.  If the error term indicates that an output unit has 
turned off when it should have turned on, then Eq.(3) will modify the weight in such a way to increase net input.  
If the error term is zero, then Eq.(3) will not change the weight.   

When the activation function is continuous (e.g., the logistic equation), gradient descent learning can be 
used to modify weights.  This changes connection weights in such a way that output unit error is reduced as 
quickly as possible by multiplying output unit error by the first derivative of the activation function (f’(netj) [13].  
This requires an elaborated statement of error for output unit j, represented as δj.  The first derivative of the 
logistic equation, i.e., Eq.(2), is equal to the value aj (1 – aj).  So, the equation for δj when the logistic function is 
used is: 

δj = (tj – aj) f’(netj)  = (tj – aj) aj (1 – aj)                                                   (4) 

A gradient descent learning rule for a perceptron that uses the logistic activation function is defined by inserting 
the error term from Eq.(4) into the generic learning rule that was given in Eq.(3) 

∆wij = η δj ai = η (tj – aj) aj (1 – aj) ai                                         (5) 

The bias (θj) of output unit j can also be modified with a variation of Eq.(5). 
By specifying learning rules like those in Eqs.(1) and (3), one can explore the relationship between them 

and other accounts of learning.  For example, consider the Rescorla-Wagner model  in Eq.(1).  It is clear that its 
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structure is very similar to that of the generic learning rule in Eq.(3). Indeed, many researchers have shown that 
the two equations are equivalent [12, 14, 15].  This is usually proven by labeling the various components of a 
perceptron to relate them to the Rescorla-Wagner model, and by then replacing the terms in Eq.(3) with the new 
labels.  This translates Eq.(3) into the Rescorla-Wagner rule. 

Given existing proofs that a perceptron that is trained with a supervised learning rule is an instance of the 
Rescorla-Wagner model, it should be no surprise that a perceptron can easily simulate an experiment in which an 
animal is trained to respond to two different stimuli, A and X, by using two input units, each representing the 
presence of one of the two stimuli.   

However, if the perceptron uses a monotonic activation function like the step function or the logistic 
equation, then it will not generate the overexpectation effect.  In Phase 1 of training, the network will learn to 
respond to A and to X, and learn not to respond in their absence.  This suggests that the individual connection 
weights from both A and X to the output unit will each be substantially larger than the bias, which will lead to a 
signal through one of these connection weights to be sufficiently strong to turn the output unit on.  In Phase 2 of 
training, the network will be presented A and X together, producing an even stronger signal to the output unit, 
which will again cause it to (correctly) turn on.  Because it will generate this correct response – and correctly fail 
to respond when no signal is sent through the connection weights – the network’s weights and bias will not be 
modified any further.  Therefore the perceptron’s response to the individual stimuli will not decrease, and the 
overexpectation effect will not be evident. 
 

3. Simulation 1: Logistic Activation Function 
   

The preceding section argued that a perceptron with an activation function that has one threshold (e.g., step 
function, logistic equation) will not generate the overexpectation effect.  The simulation described below tests 
this prediction. 

Three different training sets were created to represent the different stimulus sets used in the 
overexpectation paradigm, and are provided in Table 1.  In Phase 1, the networks were trained to respond to the 
presence of A or X, and to not respond when both stimuli were absent (~AX).  In Phase 2, the networks were 
trained to respond to the presence of both stimuli (AX), and not to respond to ~AX.  At the start of Phase 2, the 
weights of the network were those that resulted from the first phase in training.  In Phase 3, the network 
produced by Phase 2 was tested on all of the possible stimuli that could be presented to it (A, X, AX, ~AX) 
without undergoing additional training. 

 

Table 1.  The output unit activations generated by two different types of perceptrons at different points in the 
overexpectation paradigm.   
 

     Responses of Perceptrons 
     Logistic Activation 

Function 
Gaussian Activation 

Function 
Epochs     696 - - 93 - +2 - 

 Stimulus Input 1 Input 2 Output        
~AX 0 0 0 0.10   0.10    

A 1 0 1 0.94   1.00    Phase 1 X 0 1 1 0.94   1.00    
~AX 0 0 0  0.10   0.10 0.02  Phase 2 AX 1 1 1  1.00   0.12 0.97  
~AX 0 0 -   0.10    0.02

A 1 0 -   0.94    0.45
X 0 1 -   0.94    0.46Phase 3 

AX 1 1 -   1.00    0.97
 

A traditional perceptron was used in this simulation, and it consisted of two input units and one output unit.  
The logistic equation was used as the activation function in the output unit.  The perceptron was trained using the 
gradient descent rule [16].  At the start of Phase 1, the connection weights were assigned random values in the 
range from –0.1 to +0.1.  The bias of the activation function was assigned an initial value of 0.  The learning rule 
was used to modify both connection weights and the bias after the presentation of each pattern.  The learning rate 
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was 0.5, and no momentum was used.  The perceptron was trained in a series of epochs, where each epoch 
involved presenting every pattern in a training set once.  The order of pattern presentation was randomized every 
epoch.  The network was trained in Phase 1 until it generated a “hit” for every pattern. A hit was operationalized 
as an activation of 0.90 or higher when the desired activation was 1.00 and as an activation of 0.10 or lower 
when the desired activation was 0.00.  The network generated a “hit” for each of the three Phase 1 patterns after 
696 epochs of training. 

In Phase 2, the perceptron was trained on the second set of patterns (see Table 1), but the starting weights 
were those produced by Phase 1 training.  This perceptron was able to generate “hits” for the Phase 2 stimuli 
without any additional training.  The responses of the network were then observed when all four possible stimuli 
were presented to it in Phase 3. 

The results of training this network are also presented in Table 1.  It is clear that the perceptron did not 
generate the overexpectation effect, as was predicted from our consideration of the general characteristics of this 
type of network.  After learning to respond to A and X as individual stimuli, this perceptron was able to correctly 
respond to the compound stimulus AX without any additional training.  As a result, at the end of the paradigm 
the perceptron generated equally strong responses to A, X, and AX.  This is contrary to the notion that this 
perceptron is a valid embodiment of the Rescorla-Wagner rule. 
 

4. Simulation 2: Gaussian Activation Function 
 

The first simulation produced results that were consistent with the prediction that traditionally-defined 
perceptrons will not generate the overexpectation effect.  However, this does not mean that one should abandon 
attempts to relate perceptron-like architectures to models of animal learning.  This is because other variations of 
the perceptron are available.  One is not restricted to using the logistic equation as an activation function [17].  If 
an output unit used a different activation function that had two thresholds – a lower threshold for turning 
activation on, and a higher threshold for turning activation off – then it should produce overexpectation. 

One example of such an activation function is the Gaussian equation used by Dawson and Schopflocher 
[23] to create networks of value units.  Their activation function was: 

G(neti) = exp (-π(neti - µj)2)                                     (6) 

In this equation, G(neti) is the activation being calculated for output unit j, neti is the net input for that output unit, 
and µj is the mean of the Gaussian.  When the net input to the output unit is equal to the mean (i.e., equal to µj), 
the activity that is generated is equal to 1.0.  As a result, µj can be thought of as being similar to the bias of the 
logistic or the threshold of the step function.  This activation function can be used in a perceptron; when this is 
done, the perceptron can be trained using a variation of the learning rule that was given above in Eq.(5) [18].  
The variation of the learning rule requires a different expression of error (Eq.(4)) that builds upon the derivative 
of the Gaussian equation. 

An output unit that employs Eq.(6) will only respond to a narrow range of net inputs; if the net input is 
either too small or too large, then the output unit will fail to respond.  This type of function has been used to 
explore some issues in animal learning.  For instance, [19] used this activation function to model attentional 
effects in associative learning [20-22], and found that this network generated results that were a better fit to 
results from animals in a patterning task than did a network that used a logistic activation function. 

A perceptron that employs a function like the Gaussian is much more likely to generate the overexpectation 
effect.  This is because when the perceptron is presented the combined stimuli in Phase 2 of training, the net 
input should be high enough to exceed the net input range that causes the output unit to turn on.  As a result, the 
output unit will turn off, and – unlike the case in Simulation 1 – more training will be required.  The purpose of 
the second simulation was to test this prediction, and to see whether the resulting behavior of the network 
resembled the overexpectation effect. 

The method used in the second simulation was identical to that used in Simulation 1, with the exception 
that the output unit used the Gaussian activation function.  Therefore in Simulation 2 the perceptron was trained 
with a variant of the gradient descent rule [23] that is specialized to work with the Gaussian activation function, 
but belongs to the same general family of learning rules that was used to train the other perceptron (e.g., [13]).  
In Phase 1, its connection weights and bias (µj) were randomized in the same fashion as before.  It was trained 
with a learning rate of 0.1, with no momentum.  It too was trained until a “hit” was generated to every pattern, 
which occurred after 93 epochs.  At the start of Phase 2, it did not generate a hit to every pattern, but did so after 
only 2 additional epochs of training.  The responses of this final network to the four possible stimuli were then 
observed in Phase 3. 
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The results of Simulation 2 are also provided in Table 1.  It can be seen that the second perceptron did 
generate the overexpectation effect.  At the start of Phase 2, the network failed to respond to the compound 
stimulus AX.  This is because the net input from this compound stimulus was larger than the net input produced 
by either stimulus alone (i.e., A or X during Phase 1).  The net input for AX was large enough to be outside of 
the “tuning range” of the Gaussian activation function, leading to low output unit activation.  However, it only 
took the network 2 additional epochs of training to correct this problem.  Phase 3 testing revealed that one of the 
effects of this small additional amount of training was to attenuate the network’s responses to A and to X.  It can 
be seen that training on the compound stimulus resulted in the network’s responses to these two stimuli to be less 
than half of its response to AX. 

This simulation clearly shows that a perceptron using a Guassian activation function, in contrast to one 
using a traditional activation function, can generate the overexpectation effect.  However, this result does not 
suggest that the perceptron with a Guassian activation function provides the best model of conditioning effects, 
nor does it support an argument against other computational models of learning [24-26].  Rather, this simulation 
illustrates how the activation function alters the fit of the simulation to empirical predictions of the Rescorla-
Wagner model.  Whether this particular model will accurately fit other empirical constraints is a separate issue 
that may be addressed in future research.     
 

5. Discussion 
 

In relating artificial neural networks to models of animal learning, it has been argued that artificial neural 
networks provide an account of how formal theories of animal learning might be translated into biologically 
plausible implementations (e.g., Shanks, 1995).  This view requires that artificial neural networks are consistent 
with accounts of learning at more abstract levels – that is, that they be formally equivalent. 

The current results bring this assumption into question.  If, for instance, standard perceptrons are formally 
equivalent to the Rescorla-Wagner model, then they should generate all of the effects predicted by this model.  
However, we have shown that this is not the case for the overexpectation effect.   

This is not to say that the overexpectation effect cannot be generated by variants of the traditional 
perceptron architecture.  For instance, in Simulation 2 we demonstrated that a perceptron that used a 
nonmonotonic activation can produce the effect.  However, there is little comfort in this kind of demonstration to 
researchers who wish to relate perceptrons to models of animal learning.  This is because the comparison 
between the two types of models is generally mute about the activation function employed by the network.  The 
fact that when empirical data is brought to bear the nature of the activation function becomes critical suggests 
that the formal relationship between artificial neural networks and associative learning needs to be re-evaluated.  
Further research is clearly required to determine precise relationships between particular forms of artificial 
neural networks and particular learning theories. 
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