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a b s t r a c t

The reorientation task is a paradigm that has been used extensively to study the types of
information used by humans and animals to navigate in their environment. In this task,
subjects are reinforced for going to a particular location in an arena that is typically rect-
angular in shape. The subject then has to find that location again after being disoriented,
and possibly after changes have been made to the arena. This task is used to determine
the geometric and featural cues that can be used to reorient the agent in the arena. The
purpose of the present paper is to present several simulation results that show that a sim-
ple neural network, a perceptron, can be used to generate many of the traditional findings
that have been obtained using the reorientation task. These results suggest that reorienta-
tion task regularities can be explained without appealing to a geometric module that is a
component of spatial processing.

� 2009 Elsevier B.V. All rights reserved.

1. The reorientation task

The ability to orient and navigate in space is critical for
the survival of humans and animals. Studies of navigation
in indoor environments have found that humans and other
animals can use available external cues to determine direc-
tion (Cheng & Newcombe, 2005). Such cues can include the
overall shape of the environment (geometric cues), as well
as other available landmarks or local elements that might
also be placed in the environment (feature cues). Geomet-
ric cues are presumed to be relational, while feature cues
are not: ‘‘A geometric property of a surface, line, or point
is a property it possesses by virtue of its position relative
to other surfaces, lines, and points within the same space.
A non-geometric property is any property that cannot be
described by relative position alone” (Gallistel, 1990, p.
212). One question of considerable interest is the extent
to which either geometric or feature cues are used to gov-
ern navigation.

One approach that has been used extensively to answer
this question is the reorientation task, first introduced by

Cheng (1986). In this paradigm, an agent is placed within
an enclosure or arena that is usually rectangular in shape.
The metric properties of the arena (i.e., length of walls, an-
gles between walls) combined with the distinction be-
tween left and right (e.g., the long wall is to the left of
the short wall) provide geometric cues. Colors of walls, or
the visual properties of additional objects added to the are-
na (e.g., placed at each corner of a rectangular enclosure)
can be used to provide feature cues (see Fig. 1). In the reori-
entation task, an agent learns that a particular place – usu-
ally a corner of a rectangular arena – is a goal location. The
agent is then removed from the arena, disoriented, and re-
turned to an arena, with the task of using the available cues
to relocate the goal. The agent can, of course, be placed
back into the original, unaltered arena. Of more interest
are experimental conditions in which the arena has been
changed in some way.

For example, after training in one arena (e.g., Fig. 1B or
D) the subject might be placed back into an arena after the
feature cues have been moved to different locations (e.g.,
Fig. 1C or E). This manipulation places feature cues in con-
flict with geometric cues. Will the agent move to a location
defined by geometric information, or will it move to a dif-
ferent location indicated by feature information? Extensive
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use of the reorientation task has uncovered a wealth of
empirical evidence about animal navigation and the rela-
tive relevance of geometric and feature cues. These results
have revealed some striking regularities in the reorienta-
tion task.

First, consider the case in which animals must perform
the reorientation task in a rectangular arena using only
geometric cues (Fig. 1A). This occurs when no unique fea-
ture cues are present in the arena. One consequence of this
condition is that geometric cues do not specify a single tar-
get location in such an arena. For instance, the geometric
cues available at Location 4 of Fig. 1A are identical to those
available at Location 2 of the same figure: 90� angle, longer
wall to the left and shorter wall to the right. As a result,
these two corners are geometrically indistinguishable.
When agents are trained on the reorientation task under
such conditions, one of the basic findings is rotational error
(Cheng, 1986, 2005). When rotational error occurs, the
trained animal goes to the reinforced corner, as well as
the corner located at a 180� rotation through the center
of the arena, at above chance levels. That is, the agent can-
not, and should not be able to, distinguish the reinforced
corner from another corner that has identical geometric
properties. This is usually taken as evidence that the ani-
mal is relying upon the geometric properties of the envi-
ronment. Rotational error has been found in numerous
studies with species ranging from ants (Wystrach & Beu-

gnon, 2009) to humans (see Cheng and Newcombe
(2005) for a review).

The second main regularity that governs the reorienta-
tion task occurs when feature cues (e.g., distinct objects)
are added to the arena. These cues can be used by agents
to uniquely relocate the reinforced location. For instance,
feature cues can be added by making one of the arena walls
a distinctive color (Fig. 1B), or by placing a unique land-
mark at each corner of the arena (Fig. 1D). The addition
of such information can eliminate the response indetermi-
nacy that is observed when only geometric cues are
available.

Third, even though unique objects may be sufficient to
correctly relocate a reinforced place in the arena, it would
appear that in most cases agents use both feature and geo-
metric cues. That is, geometric cues can influence behavior
even when such cues are not required to solve the task.
This claim is supported by several pieces of evidence. First,
in some cases subjects continue to make some rotational
errors even when a feature disambiguates the correct cor-
ner (Cheng, 1986; Hermer & Spelke, 1994). Second, when
features are removed following training, subjects typically
revert to choosing both of the geometrically correct loca-
tions (Kelly, Spetch, & Heth, 1998; Sovrano, Bisazza, & Val-
lortigara, 2003). Third, when the features are moved after
training so as to create a conflict between geometric and
feature cues, control by both types of information is often
observed (Brown, Spetch, & Hurd, 2007; Kelly et al.,
1998; Ratliff & Newcombe, 2008); the extent of control
by geometric information on such tests appears to depend
on several factors, including species, prior experience, and
size of arena (Cheng & Newcombe, 2005). Thus, even when
feature cues provide the most reliable indicator of the goal
location, geometric information is typically also encoded.

Early theories of the regularities governing the reorien-
tation task proposed that geometric features were encoded
by modular processes that were dedicated to this kind of
information (Cheng, 1986; Gallistel, 1990). For example,
Gallistel (1990) viewed the solution of the reorientation
task as a two stage process. The first stage occurs when
an agent is first placed in an arena: it encodes the shape
of the arena by attending to metric cues, such as wall
lengths and angles between walls, as well as to sense cues
(i.e., the distinction between left and right). The purpose of
encoding the arena’s shape is that this information is then
used by the agent to determine its heading: that is, the are-
na’s shape provides the reference frame for the agent’s
ability to orient itself. The second stage occurs when an
agent is disoriented, and then placed in an arena once
again. In this stage, the agent uses a representation of the
shape of the previously encountered arena as a mental
map. The agent ‘‘gets its heading and position on its map
by finding the rotation and translation required to produce
a congruence (shape match) between the currently per-
ceived shape of the environment and a corresponding re-
gion of its map” (p. 220). If the only sources of
information used to create such maps are sense and geo-
metric cues, one consequence of this theory is rotational
error in rectangular arenas.

A key assumption of the Gallistel (1990) model is that
the processing of environmental shape is modular (Fodor,

Fig. 1. Examples of rectangular arenas that can be used to study spatial
reorientation. (A) A rectangular arena with no feature cues. The corners
(Locations 1 through 4) are potential locations for reinforcement. Note
that the corners at Locations 4 and 2 are geometrically equivalent to one
another, as are the corners at Locations 1 and 3. (B) Wall color used as a
feature cue. The wall indicated by the dashed line would be one color
(e.g., white) while the other three walls would be a different color (e.g.,
black). (C) An affine transformation of (B), usually described as a conflict
test when an animal is trained in an arena like that in (B), and then placed
in this arena. In this conflict test, Locations 4 and 2 have correct geometry,
but incorrect features. Location 1 has correct features, but incorrect
geometry. Location 3 has incorrect geometry and incorrect features. (D)
Feature cues as landmarks at each location. Each letter stands for a unique
object (e.g., a colored or patterned panel) that can be used to identify the
location. (E) An affine transformation of (D).
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1983). According to Fodor, a module is a neural substrate
that is specialized for solving a particular information pro-
cessing problem. A module has access only to limited infor-
mation to use to solve this problem; other information is
simply not available (even if it is relevant). Modules oper-
ate in a fast, mandatory fashion; they exhibit characteristic
breakdown patterns when they fail because of their spe-
cialized neural circuitry; and they operate independently
of the influence of the contents of higher-order beliefs –
that is, they are cognitively impenetrable (Pylyshyn,
1984). It has been argued (Cheng, 1986; Gallistel, 1990)
that the geometric computations in Gallistel’s model are
modular because they are mandatory (i.e., they are carried
out even when unnecessary because of the presence of fea-
ture cues) and impenetrable because they are not influ-
enced by ‘‘information about surfaces other than their
relative positions” (Gallistel, 1990, p. 208), which would
be useful to disambiguate the correct and rotational
corners.

Recently, questions have been raised about this strong
assumption that geometric cues are processed by a geo-
metric module. One reason for this is that the most com-
pelling evidence for claims of modularity comes from
neuroscience (Dawson, 1998; Fodor, 1983), but such evi-
dence about the modularity of geometry in the reorienta-
tion task is admittedly sparse (Cheng & Newcombe,
2005). As a result, most arguments about modularity in
this context are based on behavioral data. However, such
data is consistent with many different notions of modular-
ity (e.g., Cheng & Newcombe, 2005, Fig. 3.

One result of the questions that have been raised about
the existence of a geometric module is the proposal of
alternative notions of modularity (e.g., Cheng, 2005; Cheng
& Newcombe, 2005). Cheng (2005, p. 17), suggests that
‘‘geometric and feature information are encoded together
in one record for localization. This process is non-modu-
lar.” Cheng then proceeds to preserve modularity by argu-
ing that different types of information might be stored in
the same location, but when certain devices access this
common store, they only access particular types of infor-
mation, and are thus modular in nature. In short, Cheng
conjoins ‘‘a modular process and a non-modular represen-
tational structure.” Interestingly, this is exactly the sort of
processing that typifies nonmodular information process-
ing architectures, such as production systems (Newell,
1973, 1980), where each processor searches a working
memory for very particular triggering information.

More recently, some researchers have considered aban-
doning the assumption of geometric modularity com-
pletely (Cheng, 2008). The first alternative to modularity
was adaptive combination theory (Newcombe & Ratliff,
2007). In this theory, mechanisms are used to weight con-
tributions of different sources of information when they
are combined to control a decision or judgment. The
weighting can combine information sources that would
not all be available to a single module, and reflects an
agent’s history of experience with this information as well
as its variability (for instance, when the weighting is gov-
erned by Bayesian theory (Cheng, Shettleworth, Huttenl-
ocher, & Rieser, 2007). Another recent model of the
reorientation task uses a general theory of operant associa-

tive learning in which geometric and feature cues are not
treated differentially (Miller & Shettleworth, 2007, 2008).
A third theory predicts reorientation task behavior by
arguing that the agent maximizes the visual similarity
(on the basis of very raw images) of locations in the new
arena to the image of the goal location in the original arena
(Cheung, Stuerzl, Zeil, & Cheng, 2008; Stuerzl, Cheung,
Cheng, & Zeil, 2008). In this theory, the metric of visual
similarity does not make explicit the geometric properties
that were central to original theories of the task. Another
theory attempts to explain reorientation task regularities
using a robot that reacts to environmental stimuli, and
does not model the arena at all (Nolfi, 2002; Nolfi & Florea-
no, 2000).

As researchers revisit, revise, and potentially abandon
the notion of geometric modularity (Cheng, 2005, 2008;
Cheng & Newcombe, 2005), it is timely to consider alterna-
tive approaches. How might this be accomplished? The
possibility explored below is to adopt the paradigm of syn-
thetic psychology (Braitenberg, 1984; Brooks, 1999; Clark,
1997, 2003; Dawson, 2004; Pfeifer & Scheier, 1999): that is,
to build extremely simple models, and to use these models
to explore the extent to which they can produce interest-
ing behavior when interacting with their environment. In
particular, we explored the ability of a very simple artificial
neural network to deal with a number of different versions
of the reorientation task. This network does not include a
‘‘geometric module”, and does not qualitatively differenti-
ate geometric from featural information. If such networks
can generate a number of regularities that govern the
reorientation task, then they provide a plausible, and non-
modular, theory of reorientation.

In the remainder of this paper we briefly introduce arti-
ficial neural networks, and describe in detail how the reori-
entation task can be defined for a particular type of
network, the perceptron. We then report the results of a
number of simulations that explore the ability of this type
of network to provide insight about the reorientation task.

2. Perceptrons and the reorientation task

An artificial neural network is a system of simple, inter-
connected processing units that learns to generate a de-
sired response to a presented stimulus by adjusting the
weights of the connections between its processors (Bechtel
& Abrahamsen, 2002; Dawson, 2004, 2005; Rumelhart &
McClelland, 1986). Typically, artificial neural networks
are composed of three categories of processors: input
units, hidden units, and output units. The stimulus is en-
coded as a pattern of activity in a set of input units. The re-
sponse is represented as a pattern of activity in a set of
output units. The hidden units are intermediate processors
that detect complex features in the stimulus, which in turn
determine the network’s response. A simpler, and less
powerful, type of artificial neural network is a perceptron
(Rosenblatt, 1958, 1962), which does not include a layer
of hidden units. While this type of network is simpler than
more modern multilayered architectures, it still has a great
deal of psychological relevance. Perceptrons can be used to
simulate a great many results in the classical conditioning
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literature (Dawson, 2008), and the training procedure for
such networks is formally equivalent to the Rescorla–Wag-
ner model of animal learning (Gluck & Bower, 1988; Sutton
& Barto, 1981). Indeed, the simulations below show that
perceptrons are capable of solving the reorientation task.
We now describe in more detail how the reorientation task
can be represented for such networks.

The perceptrons involved in the simulations below all
used input units to encode various stimulus features pres-
ent at different locations in a reorientation task arena. They
also had a single output unit used to encode a response to
each stimulus, which could be interpreted as the percep-
tron’s judgment of the likelihood of receiving a reward at
a stimulus location. Each input unit was connected to the
output unit by a weighted connection whose value was

determined by a process of associative learning. An illus-
tration of the perceptrons used in the simulations below
is provided in Fig. 2.

2.1. Defining the reorientation task for a perceptron: stimuli

Consider a perceptron to be an agent that inspects each
of the four corners of the rectangular arena illustrated in
Fig. 1. For each inspected location, the perceptron registers
a number of different properties: the length and color of
the wall to the left, the length and color of the wall to
the right, the angle between the walls at the location,
and three different features (e.g., color, shape, height) of
an object that might be present. The different property val-
ues were encoded by activating the perceptron’s input
units. Forty-four different input units were required to rep-
resent the eight different features that could be available at
any location. Table 1 provides the list of features, the units
involved in encoding a feature, and examples of encodings
of different possible values of these features. In some sim-
ulations, one or more features may not be present. The ab-
sence of a feature was represented by activating all of its
associated input units with a value of 0 (i.e., turning all
of the feature’s units off).

Note that the encoding scheme that was employed used
local codes for some features (i.e., all those represented by
unary coding). In a local code, turning a single input unit on
provides enough information to define a feature (e.g., Daw-
son, 2008, Chapter 9). The encoding scheme for wall length
was distributed. In a distributed code, the definition of a
feature requires the simultaneous consideration of signals
from multiple input units, as is the case in a thermometer
code for distance. The distinction between local and dis-
tributed codes is different from the distinction between
elemental and configural representations that is important
to consider in neural network models of biological learning
(Pearce, 1997, 2002). Both elemental and configural repre-
sentations can be implemented in a perceptron using local
encodings (e.g., Dawson, 2008, Section 9.6). An elemental
representation is accomplished by encoding the presence

Fig. 2. The perceptrons used in the simulations had a single output unit,
and 44 input units. The output unit used a logistic activation function. The
input units are represented by the cylinders, and the lines indicate
modifiable connections between input units and the output unit. The
figure uses shading to indicate groups of input units that are used to code
a particular cue; the cue encoded by a group is labeled in the figure. The
coding scheme used for each cue type is described in the Table 1 in the
text. In this coding scheme, input units were turned either on or off to
represent various feature values at a location of interest.

Table 1
Encoding of a location’s properties using 44 input units of a perceptron.

Input units Feature Feature coding Example values Encoding of example values

Units 1–2 Color of wall on left Unary coding, 2 units Black 1 0
White 0 1

Units 3–14 Length of wall on left Thermometer coding, 12 units 4 1 1 1 1 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 1 1

Units 15–18 Angle between left and right wall Unary coding, 4 units 90� 1 0 0 0
145� 0 1 0 0
35� 0 0 1 0
45� 0 0 0 1

Units 19–22 Feature 1 of object placed at location Unary coding, 4 units Value 1 1 0 0 0
Value 2 0 1 0 0
Value 3 0 0 1 0
Value 4 0 0 0 1

Units 23–26 Feature 2 of object placed at location Unary coding, 4 units Identical to codes used for 4 different values of Feature 1
Units 27–30 Feature 3 of object placed at location Unary coding, 4 units Identical to codes used for 4 different values of Feature 1
Units 31–42 Length of wall to right Thermometer coding, 12 units Identical to codes used for length of wall to left
Units 43–44 Color of wall to right Thermometer coding, 2 units Identical to codes used for length of wall to left
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of individual features – all of the representations in Table 1
are elemental in this sense. A configural representation is
accomplished by adding additional units that (locally) rep-
resent the presence of unique combinations of feature ele-
ments (e.g., a single unit that is turned on when a
particular collection of different features is present). The
representational scheme detailed in Table 1 is not configu-
ral in this sense.

Clearly, there are a number of options that could be
used to represent the reorientation task – or any other task
– for a perceptron. Features can be represented in local or
distributed fashions (with many options within each gen-
eral type of feature) and can be elemental or configural
(Dawson, 2008, Chapter 9). The current representation
was chosen because the input units represented all of the
required information in an extremely simple format, be-
cause we have had prior success with combinations of local
and distributed representations (Dawson & Zimmerman,
2003), because we have had prior success with elemental
encodings (Dawson, 2004, 2008; Dawson & Spetch,
2005), and because pilot simulations indicated that our
encoding choice was satisfactory. Obviously, though, other
input representations could be used as is the case for any
computer simulation. For example, in addition to exploring
local/distributed and elemental/configural distinctions,
one could explore the use of other features (Cheung
et al., 2008; Stuerzl et al., 2008), or even the use of features
available at more than one corner location simultaneously.

2.2. Defining the reorientation task for a perceptron:
responses

When perceptrons are used to model associative learn-
ing experiments, it is typical to use the desired response of
the perceptron to indicate whether the perceptron was
being reinforced for the presented stimulus; this is also
standard practice in studies of reinforcement learning
(Dawson, 2008; Gluck & Bower, 1988; Gluck & Myers,
2001; Sutton & Barto, 1981, 1998). This is because rein-
forcement is equated to the presentation of the uncondi-
tioned stimulus, which has the function of activating the
desired response. All of the perceptrons studied below
had a single output unit that used the logistic equation to
convert incoming signals into activity that could range be-
tween 0 and 1 (for mathematical details, see Dawson,
2004, Chapter 9). If the perceptron was presented informa-
tion about a location that was reinforced, then the percep-
tron was trained to turn ‘‘on” to the stimulus (i.e., ideally
generate an activation of 1). If the location was not rein-
forced, then the perceptron was trained to turn ‘‘off” to
the location’s information (i.e., ideally generate an activa-
tion of 0).

Output unit activity represents the perceptron’s judg-
ment of the likelihood that a particular location is associ-
ated with reinforcement (Dawson, Dupuis, Spetch, & Kelly,
2009); the higher the activity, the higher the likelihood. In-
deed, Dawson et al. (2009) defined a successful operant
learning procedure in which perceptron outputs are used
as probabilities that determine whether a perceptron
would choose to investigate a particular location (and to
only be reinforced – or not – when the location is chosen).

2.3. Training a perceptron on the reorientation task

Once a set of desired stimulus-response pairings have
been used to define a problem, a learning rule is used to
modify a perceptron’s connection weights in order to pro-
duce a desired stimulus-response mapping. The learning
rules that are typically used to train a perceptron are er-
ror-correcting (Rosenblatt, 1962). The magnitude of re-
sponse error is used to modify connection weights in such
a way that the next time the stimulus is presented, the per-
ceptron will generate smaller error. Learning ends when the
perceptron generates an acceptably small error to every
stimulus in the training set. The gradient descent learning
rule (Dawson, 2004) was the particular error-correcting
algorithm that was employed in the simulations below.
All of the simulations were conducted with the Rosenblatt
program (Dawson, 2004, 2005), which is available as free-
ware from the following website: http://www.bcp.
psych.ualberta.ca/~mike/Software/Rosenblatt/index.html.

We now turn to describing some of the results that we
have obtained when training perceptrons to solve the
reorientation task.

3. Simulation 1: wall color cues in rectangular arenas

Geometric properties are those that are described by
relational properties (Gallistel, 1990). For example, the
geometric information that describes Location 4 in Fig. 1
is ‘‘a 90� corner with the long wall on the left and the short
wall on the right”. However, when geometric cues are all
that are available in rectangular arenas like the one in
Fig. 1, target locations are ambiguous because more than
one location can possess identical geometric properties.
In order to uniquely identify a location in the arena, addi-
tional information must be supplied. One technique that
has been used to provide such information is to make
one of the walls in a rectangular arena a unique color
(Cheng, 1986). The purpose of the first simulation was to
explore perceptron learning of the reorientation task under
analogous conditions.

3.1. Method

Perceptrons were trained on the reorientation task in a
8 � 4 arena in which the left wall in Fig. 1B was coded as
having one color (‘‘white”), while the remaining three
walls were coded as having a second color (‘‘black”). No ob-
jects were present at any time in this simulation study. Ten
different perceptrons each served as an independent ‘‘sub-
ject” in the experiment. Prior to training, the connection
weights were randomized in the range from �0.10 to
+0.10, with the bias of the output unit’s activation function
initialized to 0. All training was conducted with the gradi-
ent descent method described earlier, with a learning rate
of 0.10. The perceptron was reinforced to Location 4, and
was not reinforced to the other three locations. Perceptron
training was stopped when a ‘‘hit” was generated for every
training set member. A ‘‘hit” was defined as output activity
of 0.10 or less for a nonreinforced location, and as output
activity of 0.90 or higher for the reinforced location.
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At the end of training, a perceptron’s response to each
arena location was recorded. The responses of the percep-
tron were then examined in three additional arenas (of
identical shape and size) without additional training. In
the first additional arena the ‘‘white” wall was now to
the right of the reinforced location (Fig. 1C). In the second,
all four arena walls were ‘‘black” (Fig. 1A). In the third, all
four arena walls were ‘‘white”.

3.2. Results and discussion

3.2.1. Perceptron responses
Perceptrons converged after 679.70 epochs of training.

The first column of data in the upper half of Table 2 pre-
sents the mean response of the 10 perceptrons to each of
the four arena locations at the end of training. In all cases,
the standard deviation of the mean response was less than
0.01. The table labels each of the four arena locations
according to reorientation task conventions. Location 4
(e.g., Fig. 1A) was always reinforced during training, so it
is called the correct location. From this it follows that Loca-
tion 1 is the near location, Location 3 is the far location, and
Location 2 is the rotational location, because if it is selected
this indicates a rotational error.

The first column of data in Table 2 reveals that training
was successful: perceptrons turn on to the correct location
by producing a mean response of 0.90, and turn off to all
nonreinforced locations by producing a mean response of
0.10 or less. Interestingly, the pattern of ‘‘off” responses
in this column suggests that there may be a combined
influence of geometric cues and feature information. First,
while perceptrons do turn off to the rotational location,
they still generate a stronger response to it (0.10) than to
the other two nonreinforced locations. This is because
while the wall color provides information to identify this
corner as one that is not reinforced, its geometric cues
are identical to those of the reinforced corner.

A stronger test of the potential for combined effects of
geometry and features can be conducted by placing geo-
metric and local cues in conflict (Brown et al., 2007; Gray,
Bloomfield, Ferrey, Spetch, & Sturdy, 2005; Sovrano, Bisaz-
za, & Vallortigara, 2007). This manipulation is represented
in the second column of means in Table 2. When the local
feature is moved to a different place in the arena, the per-
ceptron generates its strongest response (0.49) to the pre-
viously nonreinforced near location, because the ‘‘white”
wall is now to the left of this location. The response of

the perceptron is attenuated, though, by the fact that the
geometry of near location is different from that of the pre-
viously reinforced correct location. Indeed, the geometry of
the rotational location still causes the perceptron to gener-
ate activity of 0.10, which is 10 times higher than it gener-
ates to the far location, which has neither the correct
geometric or feature information. Finally, the perceptron
generates a response of 0.08 to the correct location, be-
cause while its geometry is correct, the fact that it now
has a white wall on its left is a signal that this location will
not lead to reinforcement.

Another approach to examining the contribution of geo-
metric cues to perceptron activity is to take the trained
perceptrons and observe their responses when they are
placed in a rectangular arena whose walls are all ‘‘black”,
which is a color that never reliably identified the rein-
forced location. It can be seen from the third column of
means in Table 2 that when placed in the all ‘‘black” arena,
the perceptrons turned ‘‘off” to all four locations. However,
variations in these ‘‘off” responses reflect the influence of
geometry. In particular, the average response to the two
locations with correct geometry (correct and rotational)
was 0.10, which was 10 times larger than responses gener-
ated to the other two locations that had the wrong geom-
etry (i.e., short wall on the left and long wall on the right).

The post-testing of animals in arenas in which none of
the walls have the identifying feature has been reported
in the literature. However, one manipulation that has
rarely been examined is one in which post-testing occurs
in an arena in which all of the walls have the identifying
feature (Batty, Bloomfield, Spetch, & Sturdy, 2009). It is ex-
tremely easy to explore perceptron responses to this novel
arena. The final column of means in Table 2 reports the re-
sults of this condition. On the one hand, these results are
proportionally similar to those of the all-‘‘black” arena:
the strongest responses are to the geometrically equivalent
correct and rotational locations, and the weakest responses
are to the geometrically incorrect near and far locations.
On the other hand, the responses in this arena are mark-
edly and quantitatively different from those of the all-
‘‘black” arena: the perceptrons generate responses of 0.88
to the geometrically correct locations, and responses of
0.44 to the other two locations. Again, these results reflect
the combined influence of geometric and feature informa-
tion. In this arena, all locations possess the unique identi-
fier of reinforcement (a ‘‘white” wall to the left). When
this is combined with correct geometry, perceptron re-

Table 2
Average responses of perceptrons to each arena location in Simulation 1. Location 4 was the reinforced location (i.e., the correct corner).

Response type Arena location Arena condition

Training (white wall on left) White wall on top All walls black All walls white

Perceptron activity Near 0.01 0.49 0.01 0.44
Rotational 0.10 0.10 0.10 0.88
Far 0.01 0.01 0.01 0.44
Correct 0.90 0.08 0.10 0.88

Choice rule Near 0.01 0.72 0.05 0.17
Rotational 0.10 0.15 0.45 0.33
Far 0.01 0.01 0.05 0.17
Correct 0.88 0.12 0.45 0.33
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sponses become very high. However, they are not quite as
high as those observed in the training arena, because nei-
ther the correct nor the rotational location has a ‘‘black”
wall on the right in the all ‘‘white” arena. The high re-
sponses to the near and far locations, which have incorrect
geometry, are being produced mostly by the presence of
the ‘‘white” wall to the location’s left.

Why are perceptron responses so attenuated in the all
‘‘black” arena, and so amplified in the all ‘‘white” arena?
This result reflects the amount of information provided
by the various cues during training. In the training arena,
having a ‘‘white” wall to the left of a location was a perfect
signal for reinforcement. Black walls to the right signaled
reinforcement for some locations, but not others, while
black walls on the left always signaled no reinforcement.
Thus in the all ‘‘black” arena, the local features for the most
part signaled the absence of reinforcement, which dramat-
ically attenuated perceptron responses. In contrast, in the
all ‘‘white” arena, the local cues at all corner (‘‘white” on
the left) were strong cues for reinforcement, causing much
larger responses in the perceptrons.

This interpretation is borne out by examining the con-
nection weights for the two units that represent the color
of the wall on the left and the two units that represent
the color of the wall on the right. For each of these pairs
of input units, the first unit codes ‘‘black”, and the second
unit codes ‘‘white”. At the end of training a randomly se-
lected ‘‘subject” network had connection weights of
�2.21 and 2.20 for the two left wall units, and had connec-
tion weights of 0.01 and �0.19 for the two right wall units.
This pattern of connections indicates two things. First, the
color of the wall on the left was far more important than
the color of the wall on the right, because the absolute val-
ues of the first pair of weights are much greater than those
of the second pair. Second, ‘‘black” on the left was an inhib-
itory cue (indicated by its strong negative weight) while
‘‘white” on the left was an excitatory cue (indicated by
its strong positive weight). The fact that the networks have
learned both inhibitory and excitatory cues, as revealed by
these connection weights, explains the different levels of
perceptron responses when all arena walls are one color
versus the other.

3.2.2. Converting perceptron responses to choice probabilities
The results of Simulation 1 were discussed above by

reporting perceptron responses to the cues available at
each of the four locations. Each of these responses can be
interpreted as the perceptron’s prediction of the probabil-
ity of receiving a reward at each location, where this prob-
ability is computed independently for each location
(Dawson et al., 2009). However, in the reorientation task
literature, it is typical to report data in terms of the prob-
ability of choosing one location over the other three. In or-
der to strengthen the connection between our simulations
and this literature, can perceptron responses be converted
into choice probabilities?

There are many different ways in which this could be
done. We elected to employ an equation which has a long
history in mathematical psychology (Gulliksen, 1953;
Herrnstein, 1970; Luce, 1959, 1961, 1977; Thurstone,
1930). For instance, Thurstone (p. 470) defined the proba-

bility of an act leading to successful consequences (P) as
P = s/(s + e), where s is the strength of a successful response
and e is the strength of competing responses. Following the
form of this equation, perceptron responses can be con-
verted into choice probabilities by dividing each (average)
response by the sum of the (average) perceptron responses
to all of the arena locations. The lower half of Table 2 re-
ports the results of Simulation 1 after the perceptron re-
sponses in the upper half of the table were converted
into choice probabilities using this simple rule.

For the most part, the choice probabilities reported in
the lower half of Table 2 mirror the preceding discussion
of perceptron responses. After training, there is an over-
whelmingly large probability of choosing the correct loca-
tion (first column of data). When the wall color feature is
moved to a different location, choice probability shifts with
the feature (second column of data).

One interesting result is evident when choice probabil-
ities are computed for the condition in which the feature is
removed from the arena. On the one hand, strong rota-
tional error is evident: there is a 0.45 probability of choos-
ing the correct location, and a 0.45 probability of choosing
the rotational location (third column of data). This type of
result is what one would expect from surveying the litera-
ture (Cheng & Newcombe, 2005). On the other hand, the
choice probabilities computed for this condition hide the
fact that perceptron responses are very weak for every
location in this condition. This suggests that a complete ac-
count of reorienting behavior may require reporting more
than one dependent measure, both in simulations and in
experimental studies of biological agents. Choice probabil-
ities might reflect the relative attractiveness of the various
locations, but other measures – such as the latency to
choose a location to explore – might be an indication of
the absolute attractiveness of a location, which in our sim-
ulations is revealed by perceptron responses.

Another interesting result is evident when the re-
sponses to the ‘‘all white” arena are converted into choice
probabilities (fourth column of data). In this case, even
though there is an increase in perceptron responses to
the correct and rotational locations (relative to the ‘‘all
black” arena), the choice probabilities for these two loca-
tions actually decrease to 0.33. This is because the increase
in perceptron responses to the near and far locations in-
creases the choice probability to 0.17 for each. Again, this
result suggests that reorientation task behavior may re-
quire measures of both absolute and relative attractiveness
of locations.

3.3. Summary

One of the general findings in studies that have em-
ployed features that, by themselves, are sufficiently infor-
mative to uniquely identify a target location, is that
animals do not purely rely on these features. Instead, geo-
metric cues are also attended to, even though these cues
are unnecessary. The results from Simulation 1 indicate
that a similar situation is true for perceptrons, when either
perceptron responses or choice probabilities are consid-
ered. In order to explain the patterns of responses of per-
ceptrons to the different locations, one must appeal to a
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combination of geometric and feature cues. Furthermore,
these results suggest that if one only examines choice
probabilities, then some of the mechanisms that mediate
task performance might not be revealed. This is because
there were some intriguing differences when results were
reported in terms of perceptron responses and when these
responses were converted into choice probabilities.

4. Simulation 2: reorientation in kite-shaped arenas

Reorientation has been studied in arenas of various
shapes and sizes. In Simulation 2, we consider kite-shaped
arenas that can been used (Graham, Good, McGregor, &
Pearce, 2006; Pearce, Good, Jones, & McGregor, 2004;
Pearce, Graham, Good, Jones, & McGregor, 2006), in combi-
nation with manipulation of wall color features, to explore
some of the predictions that emerge from the theory that
arena shape is processed by a geometric module (Cheng,
1986; Gallistel, 1990). Fig. 3) illustrates some example
kite-shaped arenas that were explored in this simulation.
These arenas were similar to the rectangular arenas that
were explored in Simulation 1 in the sense that the long
sides of the kite were twice the length of the short sides.
The difference between the two types of arenas is defined
by the angles at each vertex of the kite: while the angle at
locations 2 and 4 is still 90�, the angle at location 1 is 145�
and the angle at location 3 is 35�. This is important, be-
cause the combination of side lengths and vertex angles
ensures that geometric features uniquely define each of
the locations, indicating that geometry can be used to
accomplish the reorientation task without relying upon
additional cues. For instance, Location 4 is uniquely de-
fined as the location with a long wall on the left meeting
a short wall on the right at an angle of 90�, while Location

2 is uniquely defined as the location with a short wall on
the left meeting a long wall on the right at an angle of 90�.

One study trained rats to navigate to goal locations in a
kite-shaped Morris water maze (Graham et al., 2006).
Three different conditions were examined. In the shape + -
color condition, the rats were reinforced at Location 4,
which in training was always bounded by black walls
and the opposite two walls were white (Fig. 3A). Thus
the goal location was defined by both unique geometry
and by unique local features. In the shape condition, the
rats were always reinforced at Location 4, but in some tri-
als it was bounded by black walls (Fig. 3A) while in others
it was bounded by white walls (Fig. 3B). Thus, in this con-
dition the goal location was defined by geometry and not
by local features. In the color condition, the rats were
trained in the same two types of arenas that were used
in the shape condition. However, they were reinforced at
Location 4 when it was defined by black walls, and were
reinforced at Location 2 when it was defined by black
walls. Thus, in this condition the goal location was only de-
fined by local features (two adjacent black walls), and was
not defined by geometric shape.

Graham et al. (2006) divided the kite-shaped arena into
two large and two small quadrants, where the quadrant
containing Location 2 and the quadrant containing Loca-
tion 4 each contained 38.2% of the arena area. After train-
ing, animals in each of the three conditions were tested
in a kite-shaped arena in which all of the walls were black.
Animals trained in the shape + color condition spent more
time in the quadrant that contained the target location
than did animals trained in the other two conditions. The
animals were also tested in a square arena in which two
adjacent walls were black, and the other two adjacent
walls were white. Note that in this arena the unique geo-
metric cues that define each location in the kite-shape no
longer exist. It was found that animals trained in the sha-
pe + color condition and in the color condition had a strong
preference to stay in the quadrant that contained the two
black walls. These results indicated that the rats in the sha-
pe + color condition learned about both shape and color,
even though a geometric module could have solved the
task without requiring any information about wall color.

The purpose of the second set of simulations was to ex-
plore the behavior of perceptrons when trained under con-
ditions that simulated the three different training
conditions studied by Graham et al. (2006). Importantly,
the purpose of Simulation 2 was not to attempt to model
the results of Graham et al. (2006). One reason for this is that
it is difficult to map perceptron responses onto the measures
that Graham et al. employed. For instance, Graham et al.
measured the percentage of time that animals spent in fairly
large quadrants of the water mazes, and did not report mea-
sures related to the smaller quadrants that contained Loca-
tions 1 and 3 in arenas like those illustrated in Fig. 3.

4.1. Method

Perceptrons were trained in kite-shaped arenas whose
long sides were eight arbitrary units long and whose short
sides were four arbitrary units long. Each arena had two
walls of one color (e.g., black) flanking the correct location

Fig. 3. Four different types of kite-shaped arenas used in Simulation 2.
Solid lines indicate black walls, and dashed lines indicate white walls. The
numbers correspond to the different locations for which features were
presented to the perceptrons.
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(Location 4 in Fig. 3A), and two walls of the opposite color
(e.g., white) flanking the rotational location (Location 2 in
Fig. 3A). Wall lengths, angle between walls, and wall color
were coded using the encoding scheme described earlier in
Table 2. As was the case in Simulation 1, no objects were
present at any time in this simulation study, so all of the
object property inputs were turned off.

In order to simulate the different training conditions,
each epoch of training involved training a perceptron in
two different arenas (i.e., the training set consisted of eight
different training patterns, four for one arena, and the other
four for a second arena). For the shape + color, both of the
arenas had black walls flanking the correct location
(Fig. 3A), and the perceptron was reinforced for this loca-
tion (and not reinforced at the other three locations) in both
arenas. For the shape condition, one of the arenas had black
walls flanking the correct location (Fig. 3A), while the other
had white walls flanking the correct location (Fig. 3B). For
both of these arenas, the perceptron was only reinforced
at this location. For the color condition, the perceptron
was reinforced at the correct location when it trained on
the arena that had black walls flanking this location. The
perceptron was reinforced at the rotational location in the
other arena, which had black walls flanking Location 2
and white walls flanking Location 4. Ten different percep-
trons served as subjects in each of these three conditions.

After perceptrons were trained to convergence, their re-
sponses were recorded, without additional training, in four
different kite-shaped arenas: all black walls (Fig. 3C), all
white walls (Fig. 3D), black walls surrounding Location 4
and white walls surrounding Location 2 (Fig. 3A), and
white walls surrounding Location 4 and black walls sur-
rounding Location 2 (Fig. 3B).

4.2. Results and discussion

On average, the perceptrons in the shape + color condi-
tion converged (generated a ‘‘hit” to each of the eight loca-
tions in the training set) after an average of 145.10 epochs
of training; in the shape condition an average of 190.40
epochs of training was required; in the color condition an
average of 281.00 epochs of training was required.

4.2.1. Perceptron responses
The top part of Table 3 presents the average response of

perceptrons trained in the different conditions to four dif-
ferent test kite-shaped arenas. The ‘‘Black Kite” column of
Table 3 is one of the test conditions examined by Graham
et al. (2006). One of the conclusions that they drew from
their results is that animals trained in the shape + color
condition were affected by color, even though shape was
sufficient to accomplish the navigational task. Table 3 sup-
ports a similar interpretation. Note that when all of the kite
walls are black, the perceptron’s responses to the near,
rotational, and far locations are noticeably higher than
the responses in the condition where black walls flank
the correct location (and white walls flank the rotational
location, the third column of means in Table 3). This in-
crease in response can only be attributed to a difference
in wall color, because arena geometry is constant in all of
the test conditions. Thus shape + color perceptrons learned
about both of these features. Similarly, note that when
tested in the black kite, perceptrons trained in the color
condition generate weaker responses to the near and far
locations than to the correct and rotational locations. This
suggests that they learned information about geometry in
addition to color. This is because while they were trained

Table 3
Average responses of perceptrons to kite-shaped arenas after training in Simulation 2.
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to respond in two geometrically different locations (when
flanked by the target color), these locations always shared
a geometric property (a 90� angle between walls) that is
not shared by these other two locations.

While the results of the black kite test condition sup-
ports an important conclusion drawn by Graham et al.
(2006), there are some striking differences between the
perceptron data and the animal data. Graham et al. noted
that the animals in the shape + color condition spent sig-
nificantly more time in the arena quadrant that contained
the correct location than they did in the quadrant that con-
tained the rotational location; animals trained in the other
two conditions tended to spend similar amounts of time in
both quadrants. Again, we point out that it is difficult to
map perceptron response strength to a particular location
to this dependent measure of Graham et al. Nevertheless,
the black kite results column in Table 3 would seem to
indicate that there should be little difference between
the shape + color and the shape conditions, given that both
indicate a very strong response to the correct location.
(That the color condition perceptrons give equally strong
responses to the correct and rotational locations is argu-
ably more consistent with the Graham et al. results.)

The fact that both shape + color and color perceptrons
have an equal preference for the correct location, while dif-
ferent from the observations of Graham et al. (2006), does
not rule out a perceptron-like account of their data. In Sim-
ulation 2, all perceptrons were trained to equally high per-
formance in the reorientation task. However, in the first
experiment of Graham et al. the animals trained in the
shape condition never learned to perform the task as well
as did animals in the other two conditions. It could be that
differences between animals in their two conditions might
reflect different degrees of learning, and that if learning
was equated, their results might be more similar to those
reported in the black kite column of Table 3.

Perhaps of more interest is the performance of percep-
trons in test arenas that were not studied by Graham et al.
(2006). For example, in the shape condition, color was
never a reliable predictor of reinforcement. So it is not sur-
prising that the responses of this perceptron to all kite
locations are identical, regardless of the colors of the walls
(white, black flanking the correct location, black flanking
the rotational location). Similarly, in the color condition,
color was the only reliable predictor, so again it is not sur-
prising that perceptron responses are highest when the
color cues are appropriate, and are near zero when these
cues are not appropriate. However, if the differences be-
tween shape + color and shape conditions are critical for
testing the geometric modularity assumption, then it
would appear that the strongest differences between these
conditions are realized when the color cues are removed
from the arena (white kite), or when the color cues are in
conflict with geometric cues (black flanking the rotational
location). In these two conditions, the geometry surround-
ing the correct location is correct, but the color cues that
the shape + color condition experienced are not. As a re-
sult, the shape + color perceptrons generate a response
that is nearly half of the response that they generate when
color cues are correct, and nearly half of the response of the
shape perceptrons to the same locations.

Even though the shape + color perceptron responses to
the correct location are attenuated when the black walls
are removed from the arena, or when they are moved to
a location that is in conflict with learned geometric cues,
it is still the case that the correct location generates a much
stronger response than do any of the other three locations.
It is not clear how this weaker – but still strong – response
would be reflected in the dependent measures that were
used by Graham et al. (2006). One issue facing associative
models of learning in general (Rescorla & Wagner, 1972),
and perceptrons as an example of such theories, is the
translation of model variables (e.g., associative strengths,
connection weights, processing unit activities) into mea-
surable behavior (Dawson, 2008, Chapter 8). The results
for perceptrons responding to the kite-shaped arenas that
were not tested by Graham et al. indicate that these arenas
might be particularly useful for evaluating associative
models of the reorientation task under an appropriate
mapping of output unit activities to animal behavior.

4.2.2. Choice probabilities
The bottom part of Table 3 reports the results of these

simulations after perceptron activities were converted to
choice probabilities using the same procedure that was de-
scribed in Simulation 1. In general, an examination of the
choice probabilities supports the interpretation that was
given earlier when perceptron activities were discussed.
However, there are some interesting quantitative differ-
ences between the two measures. Consider the shape + co-
lor condition when perceptrons were tested in the white
kite. In terms of perceptron activity, the correct location
generated a response of 0.49. However, when this is con-
verted to a choice probability, it increases to 0.89 because
of the low activities associated with each of the other three
locations. This again indicates that choice probability does
not necessarily provide an accurate estimate of responses
to cues present at locations considered independently,
and suggests that empirical studies of reorientation might
be improved by reporting multiple dependent measures
(e.g., choice probability as well as latency to respond, or
the actual routes taken by an agent as it reorients to the
new arena (Wystrach & Beugnon, 2009)).

5. Simulation 3: distinct objects in corners of
rectangular arenas

Another approach to providing feature information in
the reorientation task is to provide distinctive objects to
distinguish the target location from others (Kelly et al.,
1998). This third simulation adopted this paradigm. During
training, a three-featured ‘‘object” was placed at each of
the four arena locations in a rectangular arena. After train-
ing, the behavior of the perceptron was observed in addi-
tional arenas in which the objects were moved to
different locations, or were removed.

5.1. Method

Perceptrons were trained in a rectangular arena with a
length of eight arbitrary units, and a width of four arbitrary
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units. The perceptron was reinforced when presented the
stimulus information from Location 4 in Fig. 1 (the correct
location) and was not reinforced for the other three loca-
tions. A unique object, each defined by three features,
was present at each corner of this arena during training
(Fig. 1D). An object’s features were arbitrary; they were
vectors of numbers that were thought of as representing
some visual properties that could be detected by an agent
(e.g., shape, color, height). Each feature could have one of
four different values. In Simulation 3, each object was de-
fined by three feature values that were unique – that is,
the features possessed by one object were not possessed
by the other objects in the arena. The feature values for
the object at the near location (Location 1) were f1 = 1,
f2 = 1, and f3 = 1. Similarly, the values for f1, f2 and f3 were
all 2 for the object at the rotational location (Location 2),
were all 3 for the object at the far location (Location 3),
and were all 4 for the object at the correct location (Loca-
tion 4). Each feature value was encoded as indicated earlier
in Table 1. Additional input units were used to represent
wall length, wall color, and the angle between walls using
the same encoding scheme that was described in Table 1,
and employed in Simulations 1 and 2.

Ten different perceptrons were trained to convergence
using the same procedure that was described for Simula-
tion 1. After training, the responses of perceptrons to four
different arena configurations were examined. The first
was the arena in which the perceptron was trained. The
second was the same arena, with each object moved to a
new location, the nearest corner in a clockwise direction.
That is, the object at Location 1 in Fig. 1D was moved to
Location 2, the object at Location 2 was moved to Location
3, and so on, producing the arrangement of objects in
Fig. 1E. This change in object locations is formally equiva-
lent to an affine transformation; first the arena is com-
pressed so that its two long sides are half of their
original length; second the two short sides (prior to the
first transformation) are stretched to twice their original
length (Gallistel, 1990, p. 186). Such an affine transforma-
tion places geometric and feature cues in conflict because
after the transformation the previously reinforced location
is presented with the correct geometry, but with an incor-
rect object and a previously nonreinforced location (Loca-
tion 1) is presented with a correct object, but incorrect
geometry. The third arena that was examined was identical
to the training arena, except that the objects at the correct

and rotational locations were removed (by setting the
activity of all 12 object-feature units to 0). This arena
was studied because it has been shown that pigeons (Kelly
et al., 1998) can use objects at nonreinforced locations as
landmarks to find the reinforced locations, although most
species (rats, chicks, fish) do not (Cheng, 1986; Sovrano
et al., 2003; Vallortigara, Zanforlin, & Pasti, 1990). The final
arena that was studied was one in which all four objects
were removed. This arena is of interest because it can be
used to assess a perceptron’s sensitivity to geometric cues
when no feature cues are available.

5.2. Results and discussion

On average, the perceptrons converged after 252.2
epochs of training.

5.2.1. Perceptron responses
The mean responses of the perceptrons after training to

each of the four locations in four different arena settings
are provided in the upper part of Table 4. The standard
deviations of each of these means are 0.02 or smaller.

The first column of data in Table 4 reveals that training
was once again successful: perceptrons turn on to the cor-
rect location by producing a mean response of 0.90, and
turn off to all nonreinforced locations by producing a mean
response of 0.09 or less. As was the case in Simulation 1,
the pattern of ‘‘off” responses in this column suggests that
there may be a combined influence of geometric cues and
feature information, because the perceptrons generate a
stronger response to the rotational location (0.09), which
has correct geometry, than to the other two nonreinforced
locations.

The influence of featural and geometric clues on percep-
tron responses is also supported by examining the connec-
tion weights in trained networks. In a typical network,
connection weights for any of the three units representing
a value of 4 for one of the three features have excitatory
weights whose values are usually in the range of 0.80 (be-
cause this feature value is a reliable cue for reinforcement
at the correct location); the three units representing a va-
lue of 2 for any of the three features have inhibitory
weights whose values are usually in the range of �0.65
(because this feature value is a reliable cue for no rein-
forcement at the rotational location); the remaining units
that represent other feature values have markedly smaller

Table 4
Average responses of perceptrons to each arena location in Simulation 3. Location 4 was the reinforced location (i.e., the correct corner).

Response type Arena
location

Arena condition

Objects in original
locations

Objects moved to location
on right

Objects removed from rotational and
correct locations

All objects
removed

Perceptron
activity

Near 0.04 0.45 0.04 0.06
Rotational 0.09 0.29 0.40 0.40
Far 0.03 0.01 0.03 0.06
Correct 0.90 0.29 0.40 0.40

Choice rule Near 0.04 0.43 0.05 0.07
Rotational 0.08 0.28 0.46 0.43
Far 0.03 0.01 0.03 0.07
Correct 0.85 0.28 0.46 0.43
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weights. However, in the same network, weights that are
involved in coding a wall length of 8 (i.e., units 7 through
10 for the left wall and units 35 through 38 for the right
wall) also have developed moderately strong weights
whose absolute value is typically from 0.3 to 0.4. Interest-
ingly, these length units for the left wall have excitatory
connection weights, and the same units for the right wall
have inhibitory weights, indicating that the network is
sensitive to the fact that at the correct location the left wall
is longer than the right wall.

The second column of means in Table 4 examines the
response of the perceptrons to an arena which has under-
gone an affine transformation, and in which geometric and
feature cues are in conflict. Perceptron responses indicate
that both geometric and feature cues were processed, even
though geometric cues were not necessary to learn the
location of reinforcement. First, when the correct feature
cues are moved to the near location, the perceptron’s re-
sponse to this location increases from 0.04 in the original
arena to 0.45. However, a strong response is still evident
for the correct location (0.29), even though incorrect fea-
tures are present at this location. This strong response
must be mediated by the correct geometry at this location.
This is supported by the rotational error of the perceptron,
in which an equally strong response is generated to the
rotational location (0.29). This response is the result of cor-
rect geometry combined with a change in feature informa-
tion that was inhibiting responses to this location after
initial training. The weakest response is to the far location,
which has both incorrect featural and incorrect geometric
information.

Rotational error is also evident in the final two condi-
tions, represented by the final two columns of means in Ta-
ble 4. When feature information is removed from the
correct and rotational locations, moderate responses are
generated by the perceptron to both of these two locations.
This illustrates rotational error. The fact that the column 3
means are almost identical to those of column 4 reflects
the fact that perceptrons are unable to use objects at non-
reinforced locations as landmarks for locating the rein-
forced corner. The fact that rotational error is evident in
both of these columns again shows that the perceptrons
did process geometric cues, even though the feature cues
by themselves were capable of identifying the reinforced
location during learning. This result is important, because
it suggests that the feature cues did not completely over-
shadow learning about the geometric cues in this simula-
tion. Several studies have shown that feature cues near a
reinforced location usually do not prevent the learning of
geometric cues (Hayward, Good, & Pearce, 2004; Pearce,
Ward-Robinson, Good, Fussell, & Aydin, 2001; Wall, Botly,
Black, & Shettleworth, 2004). When overshadowing occurs
in a perceptron (e.g., Dawson, 2008, Chapter 4), there is
usually no response at all to the overshadowed cues, which
certainly is not the case in Table 4.

5.2.2. Choice probabilities
The lower part of Table 4 reports the results of Simula-

tion 3 after perceptron activity has been converted into
choice probability using the same procedure that was used
in the previous simulations. The choice probabilities sup-

port the same interpretation that was discussed in the
analysis of perceptron activity, and while there are some
quantitative differences between the upper and lower
parts of Table 4, these differences are fairly minor.

6. Simulation 4: unique, but less salient, feature cues

When objects (often colored and patterned panels) are
used to provide feature cues in the reorientation task, the
goal is usually to provide a unique visual marker at each
arena location. With a perceptron we can easily manipu-
late the salience of featural cues during training, as is
shown in Simulation 4. It is identical to Simulation 3, with
the exception that the objects at each location have only
one distinctive feature, and share the other two features
with every other landmark in the arena.

6.1. Method

The method was identical to Simulation 3, with the
exception of the features that were used to define the four
different objects at each of the Fig. 1 locations. In Simula-
tion 4, the values for f1 were unique at each location (equal
to 1 at Location 1, 2 at Location 2, and so on), while the val-
ues for f2 and f3 were equal to 2 for all four objects. Thus,
each object has one unique feature (f1), but shares the
same values for the other two features.

6.2. Results and discussion

On average, the perceptrons in this simulation con-
verged after 717.8 epochs of training. In other words, by
having less-salient objects, learning in Simulation 4 took
over 1.4 times the learning than was required in Simula-
tion 3.

6.2.1. Perceptron responses
The mean responses of the perceptrons after training to

each of the four locations in four different arena settings
are provided in the upper part of Table 5. The standard
deviations of each of these means are 0.02 or smaller.

A comparison of Table 5 to Table 4 indicates that the
qualitative pattern of results for Simulation 3 was identical
to that observed in Simulation 2, indicating that once again
both geometric and feature cues were being used to solve
the reorientation problem. However, there are important
quantitative differences between the two tables. First,
when perceptrons are placed in the arena that has under-
gone an affine transformation (the second column of
means in Table 5) their average response to the near loca-
tion is 0.24, which is nearly half the response that was ob-
served to the same location in Simulation 3. Second, for
this same arena, the responses to the rotational and correct
locations are higher in Simulation 4 than was the case in
Simulation 3. After the affine transformation, both of these
locations are associated with correct geometric cues and
incorrect feature cues. Third, the perceptron responses to
these same two locations when two objects are removed,
or when all four objects are removed, are again higher in
Simulation 4 than in Simulation 3. In these cases, geomet-
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ric cues are correct, and no feature cues are present. Com-
bined, the quantitative differences between Tables 5 and 4
indicate quite clearly that geometric cues were more pow-
erful than feature cues in Simulation 4, which is sensible
given that the intent of Simulation 4 was to provide feature
cues that, though still unique, were less salient than those
studied in Simulation 3.

A comparison of the connection weights for a typical
Simulation 4 network with those for a Simulation 3 net-
work supports the above interpretation. First, the general
pattern of wall length unit connection weights for the Sim-
ulation 4 network was the same as was previously de-
scribed for Simulation 3. However, the absolute values of
these weights in Simulation 4 were often higher by values
of 0.1–0.2, suggesting a greater emphasis on geometry
when featural information was less salient. In terms of
units representing feature values, the unit representing a
value of 4 for feature 1 (signaling reinforcement) had a
very high excitatory weight (2.0 or higher), while the unit
representing a value of 2 for the same feature (signaling no
reinforcement at the rotational location) had an extreme
inhibitory weight (�2.0 or lower). However, all of the units
for features 2 and 3 had near-zero weights. In short, the
network placed greater emphasis on the two cues required
to differentiate the correct and rotational locations in this
simulation, but could not use any other featural cues. This
is consistent with the fact that featural cues were less sali-
ent in this simulation.

6.2.2. Choice probabilities
The lower part of Table 5 reports the results of Simula-

tion 4 after perceptron activity has been converted into
choice probability using the same procedure that was used
in the previous simulations. The choice probabilities sup-
port the same interpretation that was discussed in the
analysis of perceptron activity, and while there are some
quantitative differences between the upper and lower
parts of Table 5, these differences are fairly minor.

7. Simulation 5: moving landmark features

In Simulations 3 and 4, each of the four arena locations
in Fig. 1 were associated with objects that were defined by
at least one unique feature, and these cues were put in con-
flict with geometric cues by moving objects in their en-
tirety. One advantage of our modeling approach is that

alternative transformations of object features can be per-
formed. For instance, imagine that agents are not process-
ing landmarks as whole objects, but are rather learning
about the information carried by local features of these ob-
jects. How would an agent respond if some of the features
were moved in one direction, and other features moved in
the opposite direction? To our knowledge, this situation
has not been studied. However, it is easily simulated with
a perceptron, and produces an easily explained – but coun-
terintuitive – result that raises an important issue that var-
ious theories of spatial reorientation would have to address
if the same pattern of data were observed in biological
agents.

In Simulation 5, perceptrons were trained on the reori-
entation task using landmarks at each location, where each
landmark was defined by three unique features. The train-
ing phase of this simulation was identical to the training
phase in Simulation 3. In particular, the feature values for
each object were identical to those described earlier in
Simulation 3, as can be seen in Table 6 below. The test
phase of this simulation was created by moving the f1 fea-
ture value in a clockwise direction to the nearest location
in the test arena, by moving the f3 feature value in a coun-
terclockwise direction to the nearest location in the test
arena, and by keeping the f2 feature value in the original
location. The features that defined these objects are also gi-
ven below in Table 6. Each of these new landmarks was
completely new; that is, none of these feature triplets de-
fined a landmark that was used at any location during
training. The question of interest was how these new land-
marks would affect perceptron responses in the test arena.

7.1. Method

The training method and training patterns for Simula-
tion 5 were identical to those used in Simulation 3, apart
from the transformation of features in the test arena that
was described above.

7.2. Results and discussion

On average, the perceptrons converged after 251.9
epochs of training.

7.2.1. Perceptron responses
The mean responses of the perceptrons after training

and in the test arenas are provided in upper third of Table

Table 5
Average responses of perceptrons to each arena location in Simulation 4. Location 4 was the reinforced location (i.e., the correct corner).

Response type Arena
location

Arena condition

Objects in original
locations

Objects moved to location
on right

Objects removed from rotational and
correct locations

All objects
removed

Perceptron
activity

Near 0.02 0.24 0.02 0.03
Rotational 0.10 0.39 0.49 0.49
Far 0.02 0.00 0.02 0.03
Correct 0.90 0.40 0.49 0.49

Choice rule Near 0.02 0.23 0.02 0.03
Rotational 0.10 0.38 0.48 0.47
Far 0.02 0.00 0.02 0.03
Correct 0.87 0.39 0.48 0.47
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6. The standard deviations of each of these means are 0.02
or smaller.

The one intuitive result that is presented in Table 6 is
the attenuation of the perceptron’s response to the correct
location – in the test arena, the response to this location is
nearly half of the response to the same location in the
training arena. However, the values of f1 and f3 at the cor-
rect location in the test arena are no longer equal to 4. As
these new values were not previously associated with rein-
forcement, it is not surprising that they cause a reduction
in perceptron responses when they are shifted to Location
4.

Two other less intuitive results are also evident in Table
6. First, there is a very small increase in perceptron re-
sponses to the near and far locations. During training, none
of the three feature values at either of these locations was
reinforced. In the test arena, for both locations, one of the
new feature values was reinforced. However, its presence
does not seem to increase perceptron responses as much
as might be expected. Second, during training none of the
rotational location feature values had been reinforced. In
the test arena, it is again true that none of the rotational
location feature values had been reinforced. Nevertheless,
perceptron responses to this location in the test arena are
nearly doubled relative to responses to the same location
in the training arena!

Why is it that, in the test arena, responses to the rota-
tional location are surprisingly high, and responses to the
near and far locations are surprisingly low? The answer
to this question comes from realizing that during training,
not only must the perceptron learn associations that signal
that Location 4 is the target, but it must also learn associ-
ations that signal that the geometrically equivalent Loca-
tion 2 is not the target. This is accomplished, during
training, by assigning high excitatory associations to the
units that represent the feature values that are present at
the correct location, and by also assigning high inhibitory
associations to the units that represent the feature values
that are present at the rotational location. In the test arena,
two of these inhibitory feature values have been shifted

away from the rotational location. This release from inhibi-
tion produces the surprising increase in rotational location
responses. As well, when these inhibitory feature values
are shifted to the near and far locations in the test arena,
they tend to attenuate the excitatory signal that is added
to these locations when the feature value ‘‘4” is shifted to
them as well. As a result, responses to these locations do
not increase as much as might be expected.

An interpretation of the connection weights of trained
networks can be easily used to support the argument made
in the previous paragraph. In a typical network, the three
input units that represent the presence of value 4 for any
of the three landmark features have connection weights
that are strongly excitatory, having a value of 0.80 or high-
er. Of course, this feature value was associated with rein-
forcement during training. In contrast, the three input
units representing the presence of value 2 for any of the
three landmark features have connection weights that
are strongly inhibitory, having a value of �0.54 or more
negative. This feature value was associated during training
with the nonreinforced location that was geometrically
equivalent to Location 4. All the remaining feature values
are represented by connection weights that are more mod-
erately inhibitory, ranging in value from �0.10 to �0.25. In
short, the reorientation task is being solved by making
excitatory associations with the features that accompany
the correct location, and at the same time by making inhib-
itory associations with the features that accompany the
rotational location.

7.2.2. Choice probabilities
The middle third of Table 6 reports the results of Simu-

lation 5 after perceptron activities have been converted to
choice probabilities using the same procedure employed in
the previous simulations. When this is done, the results
follow the same pattern that was revealed when percep-
tron responses were examined. In particular, training when
the features were located in their original positions results
in a high preference to choose the correct location, and
much lower preference for all other locations (although

Table 6
Average responses of perceptrons to each arena location in training and test arenas in Simulation 5. Location 4 was the reinforced location.

Arena

Training Test

Arena location Landmark features
f1, f2, f3

Perceptron responses Landmark features
f1, f2, f3

Perceptron responses

Perceptron activity Near 1,1,1 0.04 4,1,2 0.07
Rotational 2,2,2 0.09 1,2,3 0.19
Far 3,3,3 0.04 2,3,4 0.06
Correct 4,4,4 0.90 3,4,1 0.52

Choice rule Near 1,1,1 0.04 4,1,2 0.08
Rotational 2,2,2 0.08 1,2,3 0.23
Far 3,3,3 0.04 2,3,4 0.07
Correct 4,4,4 0.84 3,4,1 0.62

Miller/Shettleworth model Arena location Landmark features Choice probabilities Landmark features Choice probabilities

Near f1, f2, f3 0.01 f2, f6, f10 0.20
Rotational f4, f5, f6 0.00 f1, f5, f9 0.14
Far f7, f8, f9 0.01 f4, f8, f12 0.20
Correct f10, f11, f12 0.98 f7, f11, f3 0.46
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the preference for the rotational location is slightly higher
than for the near or far locations). When features are then
moved to their new locations, there is a marked decrease in
preference for the correct location, a slight increase in pref-
erence for the near and far locations, and a much stronger
increase in preference for the rotational location. This lat-
ter effect is, in fact, larger for the choice probability data
than it is for perceptron response data. Furthermore, this
effect must be due to a release from inhibition, because
none of the features present at the rotational location in
the test phase had been previously reinforced.

7.2.3. Miller/Shettleworth predictions
Given that Simulation 5 reports the results of a study

that has not yet been conducted with biological subjects,
it is premature to consider what it implies for the reorien-
tation task. However, these results do indicate that inhibi-
tion plays an important role in how a particular model, the
perceptron, develops associations that can be used to per-
form spatial reorientation. This is crucial, because in other
theories of reorientation, inhibition does not play as
important a role. For instance, in order to correct a flaw
in an associative model of the reorientation task, mathe-
matical assumptions are required that reduce the influence
of inhibition (Miller & Shettleworth, 2008). The same is the
case in theories that would use similarity metrics – but not
dissimilarity metrics – to solve the problem by matching
new locations to representations of the appearance of ear-
lier ones (Cheung et al., 2008; Stuerzl et al., 2008). Clearly
reorientation experiments that explicitly search for effects
like release from inhibition would play an important role
in differentiating these different models.

In the absence of experimental data, it is important to
note that the release from inhibition effect discovered in
the perceptron simulations can be used to distance this
type of model from other associative models (Miller,
2009; Miller & Shettleworth, 2007, 2008). To demonstrate
this, we modified an example reorientation task that was
studied in detail by Miller and Shettleworth (2007). In
the original example, feature B was contextual information
present at all four arena locations, feature F was present
only at the correct location, feature G was correct geomet-
ric information present at the correct and rotational loca-
tions, and feature W was incorrect geometric information
present at the near and far locations. We took this example,
but expanded feature F to be 12 different feature cues. Fea-
tures f1, f2, and f3 were present at the near location, fea-
tures f4, f5, and f6 were present at the rotational location,
features f7, f8, and f9 were present at the far location, and
features f10, f11, and f12 were present at the correct location.
We trained the corrected version of the Miller/Shettle-
worth model (Miller & Shettleworth, 2008) on this elabo-
rated feature set by coding the presence of a feature with
1 and the absence of a feature with 0. The choice probabil-
ities generated by this model after 26 iterations are pro-
vided in the bottom third of Table 6. It can be seen that
the Miller/Shettleworth model has an overwhelmingly
large preference for the correct location, and near zero
preference for all other locations, after training, which is
to be expected. However, when features are moved (see
Table 6) and choice probabilities are recomputed from

the associative strengths produced by the model, a pattern
of results that is very different from the perceptron is pro-
duced. In particular, in the test situation the rotational
location is associated with the lowest choice probability
of any of the locations. Presumably this is because the Mill-
er/Shettleworth model has a growing likelihood of visiting
the correct location, indicating that its underlying mecha-
nisms will involve increasing the strength of excitatory
cues, and are less likely to involve making cues signaling
the absence of reinforcement more inhibitory. Indeed, an
examination of the graphs of cue strength over time that
are reported by Miller and Shettleworth (2007) shows that
excitation increases to much higher levels than does the
(absolute) value of inhibition. This makes release from
inhibition less potent, and produces different results for
their model than is observed in the perceptron. These dif-
fering predictions suggest an exciting avenue for future
empirical work.

8. Simulation 6: effects of arena size with feature cues
present

Many researchers have explored the effect of changing
arena size on the reorientation task (Chiandetti, Regolin,
Sovrano, & Vallortigara, 2007; Hermer & Spelke, 1994;
Learmonth, Nadel, & Newcombe, 2002; Learmonth, New-
combe, & Huttenlocher, 2001; Learmonth, Newcombe,
Sheridan, & Jones, 2008; Ratliff & Newcombe, 2008; Sovr-
ano, Bisazza, & Vallortigara, 2002; Sovrano et al., 2003,
2007; Sovrano & Vallortigara, 2006; Vallortigara, Feruglio,
& Sovrano, 2005). A common finding, replicated in studies
on many different species, is that when agents are trained
in a larger arena, feature cues have more of an effect than
when agents learn the reorientation task in a small arena.
While such a finding is common, it is not universal. For in-
stance, although 3-year-old children can use wall color as a
feature to reorient in a large room but not in a small room
(Learmonth et al., 2002), the use of feature cues in the large
room does not occur if movements of 3-year children are
restricted in moving beyond the area covered by the small
room (Learmonth et al., 2008).

Does arena size affect perceptron performance on the
reorientation task? To answer this question, we simulated
an experiment in which agents were trained in an arena of
one size, with three-featured panels at each corner, and
were then placed in an arena of a different size, with the
objects moved clockwise to the right, producing an affine
transformation of the training arena (Vallortigara et al.,
2005). However, in addition to these conditions that were
studied by Vallortigara et al, we also studied perceptron re-
sponses to arenas to which an affine transformation had
been applied, but which remained the same size.

8.1. Method

Perceptrons were trained in two different conditions.
In one, they were trained in a small rectangular arena
that had a unique, three-featured landmark at each of
the arena’s four corners. The feature values for the object
at the near location were identical to those used in the
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training phase of Simulations 3 and 5. In the small rectan-
gular arena, the short walls were four arbitrary units in
length, and the long walls were eight arbitrary units in
length; all wall colors were black. The properties that de-
fined each of the four locations were represented to the
networks using the Table 1 coding scheme. In the second
condition, perceptrons were trained in a large rectangular
arena. This training condition was identical to the small
arena condition, with the exception that the short walls
were six arbitrary units in length, and the long walls were
12 arbitrary units in length. That is, the large arena had
the same proportions as the small arena, but was 1.5
times larger.

Ten different perceptrons served as subjects in each
condition, and were trained until convergence using the
same procedure that was employed in all of the previous
simulations. After training was completed, the responses
of each perceptron were observed in four different arenas.
Two of these were the small and the large arenas that were
used for training. The third was the small arena to which
an affine transformation had been applied, which was
accomplished by moving each landmark to the nearest
location in a clockwise direction. The fourth was the large
arena to which the same affine transformation had been
applied.

8.2. Results and discussion

On average, perceptrons trained in the small arena con-
verged to a solution after 254.3 epochs of training. Percep-
trons trained in the large arena converged slightly faster,
requiring an average of 244.2 epochs of training.

8.2.1. Perceptron responses
The average responses of perceptrons to each of the test

arenas are provided in the upper part of Table 7.

Even though the perceptron coding scheme was not de-
signed with size effects in mind, and examination of Table
7 reveals that perceptrons trained in the small arena gen-
erated different responses than did perceptrons trained
in the large arena. Some of these differences are analogous
to those that have been reported in the literature. For in-
stance, when perceptrons that have been trained in the
large arena are tested in the small arena with moved land-
marks, they have a stronger preference for the near loca-
tion (which is marked by the previously reinforced set of
feature cues) than is the case for perceptrons that have
been trained in the small arena and are tested in the affine
transformation of the large arena. Studies with human sub-
jects have shown that those trained in a large arena are
more sensitive to features when tested in a small arena
than are subjects who have been trained in a small arena
and are tested in a large arena (Ratliff & Newcombe,
2008); similar results have been demonstrated in studies
of fish (Sovrano, Bisazza, & Vallortigara, 2005).

Another general property of these results is that percep-
trons solved the reorientation problem by exploiting both
geometric and feature cues, a result that has been found
in previous studies of size effects (Chiandetti et al., 2007;
Vallortigara et al., 2005). For instance, note that percep-
trons trained in the small arena generated moderately
strong responses (0.28) to the correct and rotational loca-
tions in the small arena that has undergone an affine trans-
formation. These two locations are geometrically
equivalent, and this geometry was reinforced during
training. Furthermore, this sensitivity to geometric cues
is transferred when perceptrons trained in the small arena
are tested in the large arena that has undergone an affine
transformation. In this case, the responses to the rotational
and correct locations are slightly weaker (0.16) than in the
small arena, but are still substantially greater than to the
geometrically incorrect far location. A similar pattern of re-

Table 7
Average responses of perceptrons to landmarks in different sized arenas after training in Simulation 6.
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sponses is observed for the perceptrons trained in the large
arena.

However, other size-related differences do not reflect
extant experimental results. For instance, from Table 7 it
would appear that when perceptrons are tested in an affine
transformation of the same-sized arena in which they were
trained, perceptrons trained in the large arena have a lower
response to the previously reinforced feature cues (now in
the near location) than is the case for perceptrons trained
in the small arena. The opposite effect has been reported
in a study of spatial reorientation by chicks (Vallortigara
et al., 2005). As well, when placed in the same-sized arena
that has undergone an affine transformation, the percep-
trons trained in the large arena have a higher response to
the correct geometric cues than do perceptrons trained in
the small arena. Again, these results are inconsistent with
the more common findings that training in large arenas
produces higher sensitivity to feature cues, and lower sen-
sitivity to geometric cues, than does training in small
arenas.

8.2.2. Choice probabilities
The bottom half of Table 7 presents the results of this

simulation after perceptron responses have been con-
verted into choice probabilities. This version of the results
preserves the general interpretations that were presented
when perceptron responses were discussed: choice proba-
bilities are affected by the size of the arena in which train-
ing occurred, both geometric and feature cues are
processed, and some of the size effects mirror those found
in the literature while others do not. One interesting dis-
crepancy between the lower and upper half of Table 7 con-
cerns the choice probability to the near location when
features have been moved. When choice probabilities are
computed, the perceptron trained in the small arena now
has a slightly higher choice probability to the near location
in the large test arena than does the perceptron trained in
the large arena to the near location in the small test arena.
This result is opposite to that seen when perceptron re-
sponses are examined, and is inconsistent with the general
finding in the literature that feature cues are more salient
to agents trained in large arenas than to agents trained in
smaller arenas. Again, this discrepancy demonstrates the
need to report multiple dependent measures in studies of
the reorientation task, whether they are simulations or
experimental studies of biological agents.

To summarize, the responses of perceptrons trained to
solve the reorientation task are sensitive to arena size, at
least when wall lengths are encoded with the thermometer
code detailed in Table 1. Some of the size effects on percep-
tron responses resemble those that have been observed in
previous experimental studies, but others do not. Given the
complex nature of size effects in the literature (Learmonth
et al., 2008), it is difficult to know what to make of these
inconsistencies. It may be the case that size effects reflect
complexities of the organism (such as movement, genetic
predisposition, or prior experience; see Learmonth et al.,
2008) rather than inherent aspects of the geometric and
featural stimuli in the environment. For example, biologi-
cal factors such as movement, development, and predispo-
sition may change the way in which geometric and featural

information is encoded or weighed. At the very least, per-
ceptron sensitivity to arena size indicate that perceptrons
can provide an interesting medium to explore a variety
of hypotheses about arena size and reorientation.

9. General discussion

The current paper explored how a particularly simple
type of artificial neural network, the perceptron (Rosenbl-
att, 1958, 1962) could accomplish spatial reorientation.
The simulations reported above indicate that perceptrons
can generate some of the basic findings associated with
the reorientation task (Cheng, 2005; Cheng & Newcombe,
2005): rotational error in rectangular arenas that do not in-
clude feature cues, the ability to uniquely identify target
locations when featural cues are present, and the use of
both feature and geometric cues when both are available,
but when only one type of cue (i.e., feature) is actually re-
quired. The perceptrons were able to generate these effects
in arenas of different shapes and sizes, and using feature
cues of varying types. Importantly, interesting quantitative
differences were revealed when results were reported in
terms of perceptron responses to cues at individual loca-
tions were converted into choice probabilities. This sug-
gests that future studies of the reorientation task – be
they simulations or experimental studies of biological
agents – might need to report multiple dependent mea-
sures, because choice probabilities (the usual dependent
measure) may not necessarily reflect underlying processes
used to solve the reorientation task.

The fact that an extremely simple associative model can
produce reorientation task regularities is important given
the current status of the assumption that geometric pro-
cessing in the reorientation task is modular (Cheng,
1986; Gallistel, 1990). Questions that have been raised
about this strong assumption have recently led to the con-
sideration of alternative notions of modularity (e.g., Cheng,
2005; Cheng & Newcombe, 2005), and have also led to
models in which the assumption is abandoned altogether
(Cheng, 2008; Cheung et al., 2008; Miller & Shettleworth,
2007, 2008; Stuerzl et al., 2008). The current simulations
used an extremely simple encoding that was nonmodular,
and in which geometric and feature information was rep-
resented as locally available cues that were not qualita-
tively different. They revealed – perhaps to the surprise
of some readers – that these local, nonmodular codes still
permitted the perceptrons to demonstrate that geometric
cues were processed, even in situations in which available
feature cues made such processing redundant. Such data
has typically been used to argue for geometric modularity.
However, we were able to simulate such results without
appealing to modularity. It would appear that the general
associative mechanisms embodied in the perceptron at
the very least can provide a plausible account of spatial
reorientation.

Of course, the perceptrons that have been described in
the current paper are not the only models that have been
applied to the reorientation task. Let us briefly consider
the relationship of the perceptrons to other models that
have appeared in the literature.
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The model most similar to the perceptron is a modifica-
tion of the Rescorla–Wagner learning rule to produce an
operant learning paradigm for the reorientation task (Mill-
er, 2009; Miller & Shettleworth, 2007, 2008). These two ap-
proaches are similar in that both models deal with the
reorientation task by applying a general learning rule to
geometric and featural cues Furthermore, it has long been
known that the error-correcting rules used to train percep-
trons can be translated into the Rescorla–Wagner model
(Gluck & Bower, 1988; Gluck & Myers, 2001; Sutton & Bar-
to, 1981). However, even with these similarities there are
important differences between the two models.

First, in spite of the formal equivalence between per-
ceptron learning and the Rescorla–Wagner formalism, it
is still possible to generate behavioral differences between
perceptrons and the Rescorla–Wagner model (Dawson,
2008; Dawson & Spetch, 2005) because of different
assumptions made when the two different theories of
learning are translated into working algorithms. We saw
earlier in Simulation 5 that this holds true for the reorien-
tation task, because the Miller/Shettleworth model gener-
ated different results than did the perceptrons. In
particular, the perceptrons were more influenced by the
twin processes of excitation and release from inhibition.

Second, Miller and Shettleworth (2007) emphasize the
operant learning context of the reorientation task. The ba-
sic idea is that as an agent is reinforced for exploring a par-
ticular location, it will be more likely to explore that
location, and less likely to explore others. They modify
the Rescorla–Wagner model to reflect the changing proba-
bilities of visiting the different locations. They also argue
that the operant nature of learning during reorientation
is responsible for an effect that they call feature enhance-
ment, in which certain cues acquire greater associative
strength than would be expected. Feature enhancement
is evident, for example, when learning about some cues
is not overshadowed by learning about others – for in-
stance, when geometric information is utilized even when
feature information alone would suffice. In contrast, the
perceptrons trained in the current manuscript do not em-
ploy operant procedures, but still demonstrate feature
enhancement effects. Indeed, we have developed an oper-
ant training procedure for perceptrons, but have found that
it does not lead to different final networks than does the
more typical nonoperant training (Dawson et al., 2009).

A third difference between the two models concerns the
ease with which the two can be extended when necessary.
Miller and Shettleworth (2007) point out that in some in-
stances their model makes predictions that are contrary
to the results of extant experiments. The same is true for
the current version of the perceptron models, as shown
in the study of size effects in Simulation 6. How might fu-
ture models be developed to deal with this problem? On
the one hand, it is not immediately obvious what would
be done with a Rescorla–Wagner based model such as
the one proposed by Miller and Shettleworth. On the other
hand, it is well-known that the perceptron is a simple arti-
ficial neural network that has limitations in the regularities
that it can detect, and that one can overcome such limita-
tions by moving to a multilayer perceptron that includes

hidden units, and is trained by a variant of the error-cor-
recting rule described above. Thus, if required, the type
of work described in the paper above could be extended
by training multilayer perceptrons on the reorientation
task. However, given the successes noted above, the need
for this extension is not an immediate one.

The perceptron model is less obviously related to some
others that have been applied to the reorientation task, but
is not incompatible with them, and may complement
them. One is the view-based model in which agents reori-
ent themselves to a new arena by moving towards a loca-
tion that is most similar to remembered views (Cheung
et al., 2008; Stuerzl et al., 2008). The features involved in
this approach can be very primitive (e.g., pixel-based rep-
resentations that have undergone little image analysis).
This theory can predict phenomena like rotational error,
but does not yet include a component that explains the
mechanisms by which particular views are remembered
when reinforced. It is possible that artificial neural net-
works, whose inputs represent information currently used
by view-based theories instead of the highly processed fea-
tures described in our simulations, could provide a learn-
ing mechanism for this theory. Similarly, theories have
been proposed that explain reorientation by appealing to
the adaptive weighting of the validity of various cue fea-
tures (Cheng et al., 2007; Newcombe & Ratliff, 2007). These
theories have described this adaptive combination in gen-
eral terms, and have not provided detailed algorithms for
how features would be weighted and combined as a func-
tion of experience. Neural networks like those described in
this paper might provide such an algorithm. For instance,
perceptrons are very adept at matching the probability of
reinforcement associated with different cues (Dawson
et al., 2009), and there are strong formal links between
neural networks and probabilistic accounts of the relation-
ship between cues and outcomes such as contingency the-
ory (Shanks, 1995).

In summary, the perceptrons described in this paper
have been shown to generate important known results in
the reorientation task, and are flexible enough to generate
novel predictions to be tested in new experiments. The
behavior of the perceptrons raises the possibility that the
reorientation task can be solved by the associative mecha-
nisms that are instantiated in artificial neural networks.
This is important given that researchers who have champi-
oned geometric modularity are now revisiting some of
their earlier proposals (e.g., Cheng, 2005). Future research
is required to completely determine the successes and
the failures of the particular artificial neural network de-
scribed above, and to establish whether those interested
in this particular navigation task may require more compli-
cated multilayer networks in the future. Another interest-
ing direction for future research that is afforded by using
a neural network model will be to explore the relationship
between the perceptron results and the neuroscience liter-
ature on navigation, given the fact that artificial neural net-
works are intended to ultimately link behavior to brain
(Enquist & Ghirlanda, 2005), as well as the fact that there
is a growing interest in the neuroscience of spatial cogni-
tion (Burgess, 2008).
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