

Connectionism: A Hands-On Approach

Michael R. W. Dawson
Biological Computation Project

Department of Psychology
University of Alberta

Monday, April 5, 2004

Word Count: 80,479

Please don’t quote – this is just a draft.

© M.R.W. Dawson 06/04/2004

Connectionism: A Hands-On Approach Page 153

Chapter 27: Creating Your Own Training Sets

27.1 BACKGROUND

In using the software to do the exercises in this book, you have been working on training

sets that I have provided you. Of course, the most interesting connectionist research to conduct
is to train networks on problems that are of particular interest to you. This can easily be done, by
creating your own training sets in a format that can be read by the software that you have been
using. This final chapter describes the general properties of the .net files that are used to train a
network. We then describe the steps that the user can take to define their own training sets for
further study.

27.2 DESIGNING AND BUILDING A TRAINING SET

This leads immediately to the second design issue. How does one represent network in-
puts and outputs? Consider one network that was trained to solve Piaget’s balance scale prob-
lem (Dawson & Zimmerman, 2003). When children are presented this task, they see a real bal-
ance scale that has pegs equally spaced along the top of its arms. Different numbers of disks
can be placed on the pegs. Children must decide whether the balance scale will tip to the left, tip
to the right, or balance. How can this task be converted into a pattern classification problem, and
encoded for a network? We decided to represent the balance scale configurations using 20 input
units. The first five units represented left weight and were thermometer coded. In thermometer
coding, a unit was turned on for every weight that was placed on a peg. So, if two weights were
on a peg, the first two input units were activated; if four weights were on a peg, then the first four
input units were activated. The second set of five units represented left distance and were unary
coded. With this coding, only one unit is turned on to represent which peg the weights were
placed on. For example, if the third peg were to be used, then only the third input unit in this
group would be activated. The same encoding was repeated for the remaining 10 input units to
represent right weight (with 5 units) and right distance (with the remaining 5 units). Of course,

27.2.1 DESIGN ISSUES

The typical way for a student to start in my lab is for he or she, motivated by some curios-
ity about neural networks, to drop by my office. Usually, the student has some interest in a core
topic in cognition or perception, and they want to explore that topic using connectionism. At some
point in our first meeting they will ask me whether it is possible for a PDP network to learn to do x,
where x is the core topic of interest to them. Now, it is well known that the PDP networks have
the same in principle power as a universal Turing machine (Dawson, 1998). So, the easy, and
short, in principle answer to their question is always ‘yes’. Of course, the student is more inter-
ested in the longer, and harder, practical answer to their question. This answer involves actually
creating a network, which is often the topic of a thesis. To create a network, a number of different
design decisions must be explored.

The first design issue requires making a decision about what specific task will be learned

by a network. For example, one of my former students was interested in studying the Wason
card selection task with a neural network (Leighton & Dawson, 2001). When human subjects per-
form this task, they are presented four different cards and a logical rule. They have to decide
which cards to turn over in order to test the validity of the rule. How could we get a neural net-
work to perform an analogous task? We decided that we would present some representation of
cards and a rule to a network, and that we would train the network to show with its output units
which of the four cards it would turn over if it could. In general, in order to get a neural network to
do some task of interest, you have to translate the task into some sort of pattern classification
problem. This is particularly true for a network of value units, because for such a network the
output units need to be trained to turn on or off, and cannot be trained easily to generate interme-
diate values.

© M.R.W. Dawson 06/04/2004

Connectionism: A Hands-On Approach Page 154

other input schemes could be used. We could use thermometer coding for distance as well. We
could use unitary coding for the number of pegs. We could use some completely different coding
scheme for both properties. One of the important things to remember about representing inputs
is that there will always be a variety of different encodings, and some might be easier to use or
might generate more interesting results then others.

In terms of the output response for the balance scale network, two output units were used
(Dawson & Zimmerman, 2003). If the left output unit was turned on, then this meant that the bal-
ance scale would tip to the left. If the right output unit was turned on, then this indicated that the
balance scale would tip to the right. Problems in which the scale balanced were represented by
zero values on both output units. Again, other output encodings are possible. For instance, we
could have used three output units instead of two, where the third output unit would have been
used indicate that the scale balanced.

A third, and perhaps subtle, design issue concerns what responses will be made by a

network to its stimuli when training is over. For example, consider the Wason card selection net-
work (Leighton & Dawson, 2001). In one version of this network, we trained it to make responses
that were logically correct. However, this task is of interest to cognitive psychologists because
human subjects usually make systematic errors. In other versions of this network, we trained it to
make the responses that humans would make instead of training it to respond correctly. By ex-
amining these other versions of the network, we were able to gain some insight into how humans
deal with the card selection problem.

A fourth design issue concerns the pattern of connectivity in a network. In particular, how

many hidden units should be used? Furthermore, should there be direct connections between
the input units and the output units? Sometimes these questions will be answered by having a
particular theory about how the network should solve the problem. However, it's usually the case
that these questions are answered empirically. Because network interpretation is usually the pri-
mary focus of research in my lab, we usually decide to explore a problem to find the smallest
number of hidden units that can be used to reliably learn a stimulus response mapping (Berkeley
et al., 1995). In order to do this, you have to start out with an educated guess about the number
of hidden units. For problem of moderate size, I might start out with the same number of hidden
units at there are input units, or perhaps a slightly smaller number of hidden units. I would then
train the network. If it learned the problem quickly, then I would reduce the number of hidden
units and train it again. I would keep on doing this until I found a number of hidden units such
that if I went below this number the network would not converge, but if I used this number of hid-
den units the network would converge. Unfortunately, there is no principled way to choose the
correct number of hidden units before hand.

27.2 .2 FORMAT FOR A TRAINING SET FILE

After deciding on a representation for the inputs and outputs of a training set, and after
deciding about some issues concerning network connectivity, you are in a position to create a
training set that can be read by the software packages that you have been using while going
through this book. The training set is simply a text file that provides a little bit of information about
network connectivity, that provides the set of input patterns, and that provides the set of output
responses. This file can be created with any word processor, and then saved as a text file. After
the file has been saved, it needs to be renamed to have the extension .net. The software that
you have been using will only read files that have this extension.

All of the files that can be read by the software are organized in the same fashion. The

first four lines in the file provide the number of output units, the number of hidden units, the num-
ber of input units, and the total number of training patterns. For architectures that do not use hid-
den units, the number zero must be in that spot in the file. The next set of lines present each of
the input patterns in the training set. Each row represents one input pattern. Each number in the
row represents a value for an input unit. Importantly, with in a row different input values are sepa-

© M.R.W. Dawson 06/04/2004

Connectionism: A Hands-On Approach Page 155

rated by a single space. The remaining lines in the file represent the desired network response to
each input pattern. The first line in this part of the file represents the network’s response to the
first input pattern, the second line represents the response to the second input pattern, and so on.
Within a line, each value represents the desired value for an output unit, and again adjacent val-
ues are separated by a single space.

0 1 1

1 1 1

4. On separate rows, enter each input pattern. Remember to separate each value with a
space

6. Save the file as a text file

27.2 .3 EXERCISE 27.1

The numbers below provide an example file for the 3-parity problem. In this example, we
see that the network will have one output unit, two hidden units, three input units, and there will
be eight training patterns in total. The next eight lines present the eight input patterns. Notice
that each line has three values in it, one for each input unit. The final eight lines represent the
responses to each of the input patterns. Note that because there is only one input unit there is
only one response value per line.

1
2
3
8
0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0

0
1
1
0
1
0
0
1

All that one needs to do to create their own training set for the software used in this book
is to create a text file that has the same general characteristics as those that were just described.
The steps for doing this are:

1. Decide on a set of input pattern/output pattern pairs of interest
2. Open a word processor (e.g., the Microsoft Notepad program) to create the file
3. On separate lines, enter the number of output units, hidden units, input units, and training

patterns

5. On separate rows, enter each output pattern. Remember to separate each value with a
space

7. In Windows, rename the file to end with the extension .net instead of the extension .txt.
Remember that the software will only read in files that have the .net extension.

8. Your file can now be read in by one of the three programs that you have been using, and
you can use the software to train a network to solve a problem that you are interested in.

To complete this Exercise, you will need to define a problem that could be presented to a

network. You will have to say exactly how this problem would be represented. However, you do

© M.R.W. Dawson 06/04/2004

Connectionism: A Hands-On Approach Page 156

not have to build the training set for the problem. You only need to describe what it would
look like if you did build it. If you wanted to take the next step and build the training set to present
to one of my programs, then you could build your training set using the instructions that were
given above.

1. In a short paragraph, describe the general nature of the problem that you

would like translate into some form that could be presented to one of the
networks that we have dealt with in this book.

5. What would each input unit represent? (i.e., describe your input encoding)

7. In a short paragraph, answer the following question: If you were to build
this training set, what architecture would you present it to, and why would
you choose this architecture?

2. If you were to build this training set, how many output units would you
need?

3. What would each output unit in your network represent (i.e., what represen-
tation would you use to encode network outputs)?

4. If you were to build this training set, how many input units would you
need?

6. How many patterns would be in your training set?

© M.R.W. Dawson 06/04/2004

	Connectionism: A Hands-On Approach
	
	
	
	
	
	
	Michael R. W. Dawson

	Chapter 1: Hands-on Connectionism
	1.1 CONNECTIONISM IN PRINCIPLE AND IN PRACTICE
	1.2 THE ORGANIZATION OF THIS BOOK
	1.2.1 Exploring The Distributed Associative Memory
	1.2.2 Exploring The Perceptron
	1.2.3 Exploring The Multilayer Perceptron
	1.2.4 Personal Explorations

	Chapter 2: The Distributed Associative Memory
	2.1 THE PAIRED ASSOCIATES TASK
	2.2 THE STANDARD PATTERN ASSOCIATOR
	2.3 EXPLORING THE DISTRIBUTED ASSOCIATIVE MEMORY

	Chapter 3: The James Program
	3.1 INTRODUCTION
	3.2 INSTALLING THE PROGRAM
	3.3 TEACHING A DISTRIBUTED MEMORY
	3.3.1 Starting The Program
	3.3.2 Loading A File To Train A Network
	3.3.3Setting The Training Parameters And Training The Network

	3.4 TESTING WHAT THE MEMORY HAS LEARNED
	3.4.1 Testing Responses To Individual Patterns
	3.4.2 Plotting Learning Dynamics
	3.4.3 Saving Results In A Text File
	3.4.4 Saving Results In An Excel Workbook
	3.4.5 Leaving The “Test Network” Form

	USING THE PROGRAM

	Chapter 4: Introducing Hebb Learning
	4.1 OVERVIEW OF THE EXERCISES
	4.2 HEBB LEARNING OF BASIS VECTORS
	4.2.1 Basis Vectors And Their Properties
	4.2.2 A Training Set Constructed From Basis Vectors
	4.2.3 Procedure For Basis Vectors
	4.2.4 Exercise 4.1

	4.3 HEBB LEARNING OF ORTHONORMAL, NON-BASIS VECTORS
	4.3.1 Orthonormal Vectors
	4.3.2 The Training Set For Exercise 4.2
	4.3.3 Procedure For Mutually Orthonormal Vectors
	4.3.4 Exercise 4.2
	4.3.4 Appendix – Creating Mutually Orthogonal Vec

	Chapter 5: Limitations Of Hebb Learning
	5.1 INTRODUCTION
	5.2 THE EFFECT OF REPETITION
	5.2.1 Procedure
	5.2.2 Exercise 5.1

	5.3 THE EFFECT OF CORRELATION
	5.3.1 Linearly Independent Vectors
	5.3.2 A Linearly Independent Training Set
	5.3.3 Procedure
	5.3.4 Exercise 5.2
	5.3.5 Appendix – Creating The Linearly Independen

	Chapter 6: Introducing The Delta Rule
	6.1 INTRODUCTION
	6.2 THE DELTA RULE
	6.2.1 The Problem Of Too Much Learning
	6.2.2 Error Correction In Associative Learning

	6.3 THE DELTA RULE AND THE EFFECT OF REPETITION
	6.3.1 Procedure
	6.3.2 Exercise 6.1

	6.4 THE DELTA RULE AND THE EFFECT OF CORRELATION
	6.4.1 Procedure
	6.4.2 Exercise 6.2

	Chapter 7: Distributed Networks And Human Memory
	7.1 BACKGROUND ON THE PAIRED ASSOCIATE PARADIGM
	7.2 THE EFFECT OF SIMILARITY ON THE DISTRIBUTED ASSOCIATIVE MEMORY
	7.2.1 Constructing A Low Similarity Training Set
	7.2.2 Constructing A High Similarity Training Set
	7.2.3 Procedure For The Low Similarity Condition
	7.2.4 Procedure For The High Similarity Condition
	7.2.5 The Results Of The Experiment
	7.2.5 Exercise 7.1

	Chapter 8: Limitations Of Delta Rule Learning
	8.1 INTRODUCTION
	8.2 THE DELTA RULE AND LINEAR DEPENDENCY
	8.2.1 A Linearly Dependent Training Set
	8.2.2 Procedure
	8.2.3 Exercise 8.1

	Chapter 9: The Perceptron
	9.1 INTRODUCTION
	9.2 THE LIMITS OF DISTRIBUTED ASSOCIATIVE MEMORIES, AND BEYOND
	9.2.1 Linear Activation Functions
	9.2.2 Nonlinear Activation Functions
	9.2.3 The Step Function
	9.2.4 The Logistic Function
	9.2.5 The Gaussian Function

	9.3 PROPERTIES OF THE PERCEPTRON
	9.3.1 What Do Perceptrons Do?
	9.3.2 The Basic Architecture
	9.3.3 The Rosenblatt Learning Rule
	9.3.4 The Gradient Descent Rule
	9.3.5 The Dawson-Schopflocher Rule

	9.4 WHAT COMES NEXT

	Chapter 10: The Rosenblatt Program
	10.1 INTRODUCTION
	10.2 INSTALLING THE PROGRAM
	10.3 TRAINING A PERCEPTRON
	10.3.1 Starting The Program
	10.3.2 Loading A File To Train A Network
	10.3.3 Setting The Training Parameters And Training The Network

	10.4 TESTING WHAT THE MEMORY HAS LEARNED
	10.4.1 Testing Responses To Individual Patterns
	10.4.2 Plotting Learning Dynamics
	10.4.3 Saving Results In A Text File
	10.4.4 Saving Results In An Excel Workbook
	10.4.5 Leaving The “Test Network” Form

	Chapter 11: Perceptrons And Logic Gates
	11.1 INTRODUCTION
	11.2 BOOLEAN ALGEBRA
	11.2.1 The Work Of Boole
	11.2.2 Modern Boolean Algebra And Shannon’s Work

	11.3 PERCEPTRONS AND TWO-VALUED ALGEBRA
	11.3.1 Procedure For The Delta Rule
	11.3.2 Exercise 11.1
	11.3.3 Procedure For The Gradient Descent Rule
	11.3.4 Exercise 11.2
	11.3.5 Procedure For Exploring Bias
	11.3.5 Exercise 11.3

	Chapter 12: Performing More Logic With Perceptrons
	12.1 TWO-VALUED ALGEBRA AND PATTERN SPACES
	
	
	
	
	
	
	A
	B

	Contradiction
	A a B
	
	
	
	B
	A e B
	A
	A k B

	12.2 PERCEPTRONS AND LINEAR SEPARABILITY
	12.2.1 Linear Separability
	12.2.2. Procedure
	12.2.3 Exercise 12.1

	12.3 APPENDIX CONCERNING THE DAWSONJOTS FONT

	Chapter 13: Value Units And Linear Nonseparability
	13.1 LINEAR SEPARABILITY AND ITS IMPLICATIONS
	13.1.1 Why Typical Perceptrons Can’t Solve Nonsep
	13.1.2 What Value Units Have To Offer

	13.2 VALUE UNITS AND THE EXCLUSIVE-OR RELATION
	13.2.1 Procedure For XOR
	13.2.2 Exercise 13.1

	13.3 VALUE UNITS AND CONNECTEDNESS
	13.3.1 Procedure For Connectedness
	13.3.2 Exercise 13.2

	Chapter 14: Network By Problem Type Interactions
	14.1 ALL NETWORKS WERE NOT CREATED EQUALLY
	14.1.1 Different Activation Functions Carve Pattern Spaces In Different Ways
	14.1.2 All Networks Are Not All-Powerful

	14.2 VALUE UNITS AND THE TWO-VALUED ALGEBRA
	14.2.1 Overview
	14.2.2. Procedure
	14.2.3 Exercise 14.1

	Chapter 15: Perceptrons And Generalization
	15.1 BACKGROUND
	15.2 GENERALIZATION AND SAVINGS FOR THE 9-MAJORITY PROBLEM
	15.2.1 Training Sets
	15.2.2 Procedure For The Control Condition
	15.2.3 Procedure For The First Experimental Condition
	15.2.4 Procedure For The Second Experimental Condition
	15.2.5 Procedure For The Third Experimental Condition
	15.2.6 Exercise 15.1

	Chapter 16: Animal Learning Theory And Perceptrons
	16.1 DISCRIMINATION LEARNING
	16.1.1 Perceptrons And Patterning
	16.1.2 Patterning And A Multilayer Perceptron: A Case Study

	16.2 LINEARLY SEPARABLE VERSIONS OF PATTERNING
	16.2.1 Patterning Simulations In Principle And In Practice
	16.2.2 Architecture And Training Sets
	16.2.3 Procedure For Study 1: Integration Device Perceptron
	
	File: PRpos.net
	File: PRneg.net
	File: NPRpos.net
	File: NPRneg.net
	Table 16-2. Record of data obtained from Study 1

	16.2.4 Exercise 16.1
	16.2.5 Procedure For Study 2: Value Unit Perceptron
	
	File: PRpos.net
	File: PRneg.net
	File: NPRpos.net
	File: NPRneg.net
	Table 16-3. Record of data obtained from Study 2

	16.2.6 Exercise 16.2

	Chapter 17: The Multilayer Perceptron
	17.1 CREATING SEQUENCES OF LOGICAL OPERATIONS
	17.1.1 The Implications Of The Functional Completeness Of Logical Operations
	17.1.2 Sequences Of Logical Operations And Neural Networks

	17.2 MULTILAYER PERCEPTRONS AND THE CREDIT ASSIGNMENT PROBLEM
	17.2.1 The Credit Assignment Problem For Multilayer Networks
	17.2.2 The Generalized Delta Rule
	17.2.3 A Generalized Delta Rule For Value Units

	17.3 THE IMPLICATIONS OF THE GENERALIZED DELTA RULE

	Chapter 18: The Rumelhart Program
	18.1: INTRODUCTION
	18.2: INSTALLING THE PROGRAM
	18.3: TRAINING A MULTILAYER PERCEPTRON
	18.3.1: Starting The Program
	18.3.2: Loading A File To Train A Network
	18.3.3: Setting The Training Parameters And Training The Network

	18.4: TESTING WHAT THE NETWORK HAS LEARNED
	18.4.1: Testing Responses To Individual Patterns
	18.4.2: Plotting Learning Dynamics
	18.4.3: Saving Results In A Text File
	18.4.4: Saving Results In An Excel Workbook
	18.4.5: Inspecting Jittered Density Plots
	18.4.6: Leaving The “Test Network” Form

	Chapter 19: Beyond The Perceptron’s Limits
	19.1 INTRODUCTION
	19.2 THE GENERALIZED DELTA RULE AND EXCLUSIVE-OR
	19.2.1 Procedure For The Two-Hidden Unit Network
	19.2.2 Exercise 19.1
	19.2.3 Procedure For The One-Hidden Unit Network
	19.2.4 Exercise 19.2

	Chapter 20: Symmetry As A Second Case Study
	20.1 BACKGROUND
	20.2 SOLVING SYMMETRY PROBLEMS WITH MULTILAYER PERCEPTRONS
	20.2.1 Procedure For The Two-Hidden Unit Network
	20.2.2 Exercise 20.1
	20.2.3 Procedure For The One-Hidden Unit Network
	20.2.4 Exercise 20.2

	Chapter 21: How Many Hidden Units?
	21.1 BACKGROUND
	21.1.1 How Many Layers Of Hidden Units Are Required?
	21.1.2 How Many Hidden Units Are Needed In A Layer?

	21.2 HOW MANY HIDDEN VALUE UNITS ARE REQUIRED FOR 5-BIT PARITY?
	21.2.1 First Procedure For 5-Bit Parity
	21.2.2 Exercise 21.1
	21.2.3 Second Procedure For 5-Bit Parity
	21.2.4 Exercise 21.2

	Chapter 22: Scaling Up With The Parity Problem
	22.1 OVERVIEW OF THE EXERCISES
	22.2 BACKGROUND
	22.3 EXPLORING THE PARITY PROBLEM
	22.3.1 Procedure For Value Units And 5-Bit Parity
	22.3.2 Exercise 22.1
	22.3.3 Procedure For Value Units And 7-Bit Parity
	22.3.4 Exercise 22.2
	22.3.5 Procedure For Integration Devices And 5-Bit Parity
	22.3.5 Exercise 22.3

	Chapter 23: Selectionism And Parity
	23.1 BACKGROUND
	23.2 FROM CONNECTIONISM TO SELECTIONISM
	23.2.1 Procedure For 27 Hidden Unit Condition
	
	
	Maximum
	Weight

	23.2.2 Procedure For 18 Hidden Unit Condition
	
	
	Maximum
	Weight

	23.2.3 Procedure For 9 Hidden Unit Condition
	
	
	Maximum
	Weight

	23.3.4 Exercise 23.1

	Chapter 24: Interpreting A Small Network
	24.1 BACKGROUND
	24.2 A SMALL NETWORK
	24.3 INTERPRETING THIS SMALL NETWORK
	24.3.1 General Instructions
	24.3.2 Exercise 24.1

	Chapter 25: Interpreting Networks Of Value Units
	25.1 BACKGROUND
	25.1.1 Trigger Features And Neural Networks
	25.1.2 Identifying Trigger Features For Hidden Integration Devices
	25.1.3 Value Units, Trigger Planes, And Bands
	25.1.3 Bands And Definite Features
	25.1.4 Using Descriptive Statistics To Identify Definite Features

	25.2 BANDING IN THE FIRST MONKS PROBLEM
	25.2.1 The First Monks Problem
	25.2.2 General Procedure
	25.2.3 Exercise 25.1

	25.3 DEFINITE FEATURES IN THE FIRST MONKS PROBLEM
	25.3.1 General Instructions
	25.3.2 Exercise 25.2

	Chapter 26: Interpreting Distributed Representations
	26.1 BACKGROUND
	26.1.1 Subsymbolic Representations In PDP Networks
	26.1.2 Cluster Analysis And Distributed Features
	26.1.3 Cluster Analysis, Neural Networks, And The Number Of Clusters
	26.1.4 An Example: Choosing The Number Of Clusters For A Parity Network
	26.1.3 Interpreting Clusters

	26.2 INTERPRETING A 5-PARITY NETWORK
	26.2.1 Exercise 26.1
	
	Hidden Unit

	Pattern
	1
	2

	26.2.2 Exercise 26.2
	26.2.3 Exercise 26.3
	
	
	
	
	Table 26-5 Connections to hidden units in the parity network.

	Chapter 27: Creating Your Own Training Sets
	27.1 BACKGROUND
	27.2 DESIGNING AND BUILDING A TRAINING SET
	27.2.1 Design Issues
	27.2 .2 Format For A Training Set File
	27.2 .3 Exercise 27.1

	References

