
Humans and animals alike make inductive inferences.

Firefighters predict how fires will progress from cues such as

smoke and roof ‘sponginess’1, while peahens use the elabo-

rateness of peacocks’ tails to infer their fitness before decid-

ing whether to mate with them2. The cues on which organ-

isms base their inductive inferences are typically uncertain:

the old adage aside, sometimes there’s no smoke even where

there’s fire.

How do people make inferences, and are their infer-

ences rational? Most researchers of inference share a vision

of rationality whose roots trace back to the Enlightenment.

This now classical view holds that the laws of human infer-

ence are equivalent to the laws of probability and logic. For

French astronomer Pierre Laplace, for example, probability

theory embodied human intuition: ‘The theory of prob-

ability is at bottom nothing more than good sense reduced

to a calculus’3. Nineteenth-century German philosopher

Theodor Lipps wrote that logic ‘is nothing if not the physics

of thought’4. So fundamental was the belief that the mind

worked by the rules of probability and logic that when

human intuition was observed to deviate from them, the

rules themselves were revised5. In short, many pre-20th-

century thinkers believed that the psychological defines the

rational.

Variants of the classical view have flourished in 20th-

century psychology. Many researchers maintain the belief

that the laws of probability theory and logic at least approxi-

mately describe human inference. In the view of Cameron

Peterson and Lee Beach, for example: ‘Probability theory

and statistics can be used as the basis for psychological mod-

els that integrate and account for human performance in a

wide range of inferential tasks’6. According to Jean Piaget,

cognitive development culminates in a set of logico-mathe-

matical abilities that essentially reflect the laws of probabil-

ity and logic. More recently, Lance Rips has argued for the

existence of ‘mental logic’7 . Finally, rational-choice theo-

rists and economists often model people’s decisions using

probability theory as an approximation (e.g. Refs 8,9).

Unlike their Enlightenment predecessors, however, these

modern researchers see classical models as norms against

which human reasoning can be evaluated rather than as

codifications of it: when the two diverge, it is concluded

that there is something wrong with the reasoning, not with

the norms.

In the past 25 years, the idea that human inference can

be either defined or described by probability theory and

logic has been increasingly challenged. Proponents of the

heuristics-and-biases program have argued that inference is

systematically biased and error-prone, powered by quick

and dirty cognitive heuristics10. Numerous departures from

classical norms in inductive reasoning – ‘cognitive illusions’,

such as overconfidence, base-rate neglect, and the conjunc-

tion fallacy (all discussed in more detail later) – have been

attributed to application of these heuristics. A parallel re-

search program has been devoted to accounting for departures

of deductive inference from logical norms (for a review of

this literature, see Ref. 11).

As the heuristics-and-biases program grew, the view

that human reasoning is fundamentally irrational sup-

planted the belief that it accords with classical rational

norms within and outside psychology12. In the words of

Slovic, Fischhoff, and Lichtenstein: ‘It appears that people

lack the correct programs for many important judgmental

tasks.... it may be argued that we have not had the opportu-

nity to evolve an intellect capable of dealing conceptually

with uncertainty’13. The conjunction fallacy (see section

below on Social Rationality) impelled paleontologist

Stephen Jay Gould to speculate: ‘Our minds are not built

(for whatever reason) to work by the rules of probability’14.

Some have even argued that deviations from rational norms

‘should be considered the rule rather than the exception’15.

Are violations of rational norms really the rule? Given

the analogy between inference and perception behind the il-

lusion metaphor10, they should be considered an exception.

Just as vision researchers construct situations in which the

functioning of the visual system leads to incorrect inferences

about the world (e.g. about line lengths in the Müller-Lyer

illusion), researchers in the heuristics-and-biases program

select problems in which reasoning by cognitive heuristics

leads to violations of probability theory12. However, the
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conclusions they draw from such unrepresentative designs

often differ sharply from those drawn by researchers of per-

ception. Vision scientists do not conclude from the robust-

ness of the Müller-Lyer illusion, for instance, that people

are generally poor at inferring object lengths. However,

many advocates of the heuristics-and-biases program con-

clude from the cognitive illusions found in laboratory tasks

that human judgment is subject to severe and systematic 

biases that compromise its general functioning16,17.

How does judgment look when one does not select

problems systematically? The use of representative design,

which entails simulating real-world conditions of interest in

order to test and evaluate human performance18–20, casts

new light on inference. For instance, studies have shown

that when people are tested on a representative sample of

general knowledge questions, the overconfidence bias found

in selected samples of questions disappears (e.g. Refs 21–23;

but see also Ref. 24). In a recent meta-analysis of confidence

judgments in more than 40 general knowledge tasks, Peter

Juslin and colleagues25 found an average overconfidence of

practically zero). In addition, people’s estimates of the fre-

quency with which letters of the alphabet appear in various

positions within words are better calibrated when partici-

pants judge a large, representative sample of letters26 rather

than a small, selected sample27. While systematic design,

such as that employed in the heuristics-and-biases program,

is often desirable when we want to decide between cognitive

models, only representative design allows us to evaluate the

quality of human judgment in the real world.

Problems with the classical definition of rationality

Despite their disagreements, proponents of the neo-

Enlightenment view and the heuristics-and-biases view

agree on one critical point: rationality requires reasoning in

accordance with the rules of probability theory. Even if we

provisionally accept this definition of rationality (which we

will challenge shortly), we still see three major problems

with it. First, no single conception of probability is shared

by all statisticians and philosophers. The applicability of the

rules of probability theory to unique events is hotly dis-

puted, with some contending that they apply to unique

events and others arguing that they apply only to classes of

events28. For someone who interprets probability in the 

latter, strictly frequentistic sense, these rules are irrelevant 

to the many tasks involving unique events studied in the

heuristics-and-biases program. In our view, wherever a

norm’s applicability depends on our interpretation of prob-

ability in this way, we are not justified in treating it as 

an unequivocal norm of sound reasoning (Refs 29,30; for a

recent debate on this point, see Refs 31,32).

The second problem with the classical definition of 

rationality is its blindness to content and context. In much

research on inference, the rules of probability are taken a

priori as normative, and content is only later filled in. In other

words, rather than following the practices of good statisticians,

who tailor statistical models to suit specific problems, those

who subscribe to this definition of rationality sometimes fail

to analyse problem content and people’s assumptions about

it. Unless this is done, we cannot interpret their judgments.

In studies of Bayesian inference, for example, participants

might make intelligent assumptions that render some of the

given information irrelevant to their judgments, which can

be mistaken for neglect of base-rate information33.

The third and most serious problem we see with the

classical definition of rationality is that, beyond the simple

problems used in most research, it makes unrealistic de-

mands of the mind. In the real world, matters are more

complicated than the simple content-blind norms tested in

most laboratory problems assume. Here, Bayes’ theorem

and subjective expected-utility maximization often become

mathematically complex and computationally intractable.

Moreover, in many situations, a rational model cannot even

be specified because the problem space is unbounded (see

Refs 34 Appendix, 35). Expecting people’s inferences to 

conform to classical rational norms in such complex en-

vironments requires believing that the human mind is a

‘Laplacean demon’36: a supercalculator with unlimited time,

knowledge, and computational power.

Is there any view between the two extremes we have so

far considered, namely, that the mind is an omniscient, om-

nipotent Laplacean demon or that it simply ‘lacks the cor-

rect programs’13 for making many important judgments?

Herbert Simon set the stage for what we consider the most

promising alternative: ‘Human rational behavior… is shaped

by a scissors whose two blades are the structure of task en-

vironments and the computational capabilities of the actor’37.

In other words, rationality cannot be defined except by 

reference to environmental and cognitive constraints.

Moreover, rationality is a tool for helping organisms to

reach their real-world goals, not necessarily to conform to

rational norms. In Simon’s own words: ‘Reason is… a gun

for hire that can be employed in any goals we have’38. In the

remainder of this review, we describe how recent researchers

have used Simon’s scissors analogy to fashion a new area of

research on human inference.

Bounded rationality

The human mind has to solve important and complex

problems – such as deciding whom to marry – under condi-

tions of limited time, knowledge, and computational capac-

ity. Consider Charles Darwin, who methodically listed the

pros and cons of marriage and bachelorhood before decid-

ing to marry Emma Wedgewood. Despite his willingness to

take such an analytic approach to deciding affairs of the

heart, Darwin could not have hoped to make this decision

rationally in any classical sense. Suppose that he had 

attempted to maximize his subjective expected utility.

While he deliberated about whether marrying was the right

choice, listing each of the infinite conceivable consequences

of marrying and not marrying, assigning probabilities to

each, and searching for more information about his pros-

pective wives, they would all most likely have married other

men (not to mention had children and died). Even if they

were infinitely patient, he would still need an infinite num-

ber of supercomputers to integrate all of this information

for him.

What does Darwin’s dilemma illustrate? First, life’s im-

portant problems cannot necessarily be solved by optimiz-

ation because the space of possibilities that must be taken

into account is often unlimited. Second, even when this
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space is limited and knowledge is complete, optimization is

often impossible to achieve in any real system owing to the

computational demands it poses; after all, even Gary

Kasparov’s arch rival Deep Blue is unable to optimize its

moves fully in the well-defined problem space of chess.

Simon proposed that, because of the above constraints,

human inference in the real world exhibits ‘bounded 

rationality’ rather than the classical rationality assumed by

optimal models in psychology, economics, and biology (for

a relevant debate, see Refs 35,39). The key feature of

bounded rationality is limited information search, which 

requires some kind of stopping rule. Note that here search

can refer either to search for alternatives (e.g. mates), or

search for each alternative’s values on particular cues (e.g. a

potential mate’s age, sense of humor, etc.). We now de-

scribe various interpretations of bounded rationality, saving

the one we favor until last40.

Some researchers in psychology and economics define

bounded rationality as constrained optimization, that is,

optimizing relative to a criterion while taking the costs of

time, information search, and computation into account

(e.g. Refs 34,41–43). This stopping rule – to terminate search

when its costs outweigh its benefits – is deceptively simple.

In fact, the optimization is simply shifted to the problem of

determining when to terminate search, which means that

this brand of bounded rationality is saddled with the very

intractability that it is intended to eliminate44. Unsurprisingly,

most economists have not embraced bounded rationality 

in this form because they ‘are in the market for methods for

reducing the number of parameters to explain data, and a

reduction is not what bounded rationality promises’42.

The most prominent approach of this type, ‘rational

analysis’34,41, is predicated on the assumptions that human

cognition is adaptive and that adaptation amounts to opti-

mization. It entails specifying the goals of the cognitive sys-

tem, developing a formal model of the environment, and

deriving the optimal behavioral function based on the goals,

formal model, and minimal cognitive constraints. This

function is then compared to human performance, and the

model duly refined to bring the two into closer correspon-

dence. The cognitive constraints that rational analysis takes

into account include deliberation costs and short-term

memory limitations. Rational heuristics can conserve cog-

nitive resources by exploiting environmental regularities

(e.g. the rarity of most cues and target variables; see Refs

45,46) to simplify the task of optimization.

The rational analysis approach has made impressive

progress in developing ecologically appropriate norms to

which one can compare human performance in memory,

categorization, hypothesis testing and causal inference34,41,45.

Furthermore, it has demonstrated that some of the most 

robust findings in cognitive psychology (e.g. power-law

learning) can be illuminated by ecological analysis. Still, 

this approach has important limitations. First, it can be per-

formed only in situations in which an optimal solution can

be worked out. Second, devising a computationally tractable

rational model requires making vastly simplifying assump-

tions about the real-world environment (e.g. assuming that

cues are independent to trim down Bayesian computations;

Refs 34,41). Moreover, because rational analysis starts with

a full-blown optimal model made up of mathematical

rather than psychological components, it is not well suited

to building plausible models of human cognitive

processes35. As John R. Anderson, who spearheaded rational

analysis, has himself observed: ‘It is in the spirit of a rational

analysis to prescribe what the behavior of a system should be

rather than how to compute it’41.

Some have suggested that the cognitive heuristics iden-

tified in the heuristics-and-biases program, such as represen-

tativeness and availability, exhibit bounded rationality10,13,47.

Early research on cognitive heuristics certainly served to

demonstrate that human inference does not always conform

to classical rational norms. It also encouraged researchers to

explore the hypothesis that people rely on cognitive heuristics

made up of simple psychological processes rather than formal

procedures in order to make inferences. However, to date,

the cognitive heuristics posited in this literature have not been

formalized such that one could either simulate or analyse

mathematically their behavior (for a counter-example, see

Ref. 48), thus leaving them free to account for all kinds of

performance post hoc (for a rebuttal of this point, see Ref.

31). Furthermore, it has not been specified whether or how

such heuristics capitalize on environmental structure to make

inferences, which is central to Simon’s original conception

of bounded rationality.

We now describe some models of bounded rationality

that capture both the environmental and the cognitive

blades of Simon’s scissors. Their most critical feature is that

they include smart, simple rules for stopping information

search. We refer to heuristics based on limited (cue) search

as ‘fast and frugal’40.

Fast and frugal heuristics

Which has the larger population: San Diego or San

Antonio? If you are not American, you will probably guess

San Diego. Why? Because you have heard of it, and the

chances are that you have never heard of San Antonio. If

you are American, however, you probably recognize both

cities, and thus cannot rely on the ‘recognition heuristic’ to

make your choice40. In this context, the recognition heuristic

can be summarized in one sentence: if you recognize one

object and not the other, then infer that the recognized ob-

ject has the higher value on the target variable; if you do not

recognize either object, then guess.

What happens if you recognize both cities? In that case,

you have to retrieve information from memory to make an

inference. ‘Take The Best’ is a fast and frugal heuristic for

using this information49. Imagine that we have a set of ob-

jects, all German cities with more than 100,000 inhabi-

tants, and a target variable, population size. Each city can be

characterized on a number of binary (or dichtomized) cues,

each of which predicts population size to varying degrees.

For instance, cities with major-league soccer teams tend to

be larger. In Take The Best, the objects are compared on the

most valid cue, the second most valid cue, and so on until a

cue on which the objects differ is found (see Fig. 1). All that

Take The Best needs to learn – or to estimate – is the rank

order of cues by validity. Moreover, its stopping rule for in-

formation search is very simple: take the best cue (i.e. the

most valid one that discriminates) and ignore the rest. The
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first step of Take The Best is always the recognition heuristic,

which enables it to exploit ignorance to make smart infer-

ences. (The recognition heuristic could be the first step of

other inference strategies as well; see Ref 37.)

Using the recognition heuristic might be smart, but do

people actually use it? Empirical results suggest that they do.

In one study, American students were asked to make hun-

dreds of inferences about which member of pairs of German

cities (e.g. Bielefeld or Munich) was larger. In over 90% of

the choices in which recognition discriminated between 

alternatives, participants in this study opted for the recog-

nized city40. Clearly, a person who recognizes all objects

cannot use the recognition heuristic (which in the German

city environment generally discriminated well between

larger and smaller cities, for this American sample). A

counter-intuitive implication of this is that someone with

less knowledge can actually make more accurate inferences

under some conditions, a prediction supported by empirical

results (the ‘less-is-more effect’; Refs 40,49).

When inferring target variables as diverse as population

sizes and high-school drop-out rates, computer simulation re-

sults show that Take The Best roughly matches or outperforms

in inferential accuracy a number of linear models that inte-

grate across all cues, such as multiple regression and a unit-

weighted linear model called ‘Dawes’ rule’. Even more surpris-

ingly, the ‘Minimalist’ heuristic, a poor cousin of Take The

Best that selects cues in random order, also fares well relative

to these computationally more expensive algorithms. Take The

Best thrives particularly well compared with integration al-

gorithms when generalizations have to be made (i.e. when test

set Þ training set) rather than when data have to be fitted (i.e.

when test set = training set). This is because algorithms that

integrate all available information, such as multiple regression,

tend to suffer from overfitting, whereas Take The Best relies

disproportionately on cues that exhibit greater invariance, at

least in the data environments in which it has been tested so far.

Table 1 shows the results of a simulated competition

(excluding the recognition heuristic) between Take The

Best, Minimalist, Dawes’ rule, and multiple regression in

which the target variable was rates of homelessness in 50 

US cities. The left column indicates the average number of

cues that each algorithm had to look up (out of a total 

possible of six), which was roughly the same in both types of

competition. The center and right columns show the per-

centages of correct binary inferences each algorithm made

when the test set was equal to and not equal to the training

set, respectively.

Take The Best and Minimalist are clearly more frugal in

their use of information than the two integration algorithms,

yet are about as accurate as the others. Even more remarkably,

Take The Best actually outperforms multiple regression

when generalization is required.

Ecological rationality

Fast and frugal heuristics can perform about as well as algo-

rithms that require much more information, and in a serial

architecture, more time. What is their secret? The answer

lies in their ‘ecological rationality’. Such heuristics capitalize

on environmental regularities to make smart inferences. For

instance, the recognition heuristic exploits the fact that our

ignorance is often systematically related to variables that we

want to infer (for example, we are more likely to recognize

big cities, companies, and universities than small ones).

Mathematical analysis can help us to understand where

and why Take The Best can (or cannot) be more accurate

than a weighted linear model in which the weights are the
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Fig. 1 Flow diagram of a fast and frugal heuristic: Take The
Best. (©1996, American Psychological Association; modified,

with permission, from Ref. 49.)

Table 1. Inferring homelessness: a competition between algorithmsa

Algorithm Average number of Percent correct binary inferences
cues looked up Test set the same Test set different

as training set from training set

Minimalist 2.1 61 56
Take The Best 2.4 69 63
Dawes’ rule 6 66 58
Multiple regression 6 70 61

aModified from Ref. 50.



correlations between cues and the target variable40,51. The

set of non-redundant binary cues in any environment is 

finite. Where known cues are abundant (i.e. their number

approaches this finite maximum), weighted linear models

tend to be more accurate (and their accuracy approaches

100%), whereas where known cues are scarce (i.e. their

number is small relative to log2N, where N is the total num-

ber of objects), Take The Best is on average more accurate.

In addition, when the weights are non-compensatory; that

is, the weight of each cue exceeds the weights of all those

below it in the cue order, the faster and more frugal Take

The Best cannot be surpassed by any weighted linear model.

Because the information available in the environment

(and in the organism’s memory) is often scarce, Take The Best

might do well in a wide range of real-world situations. How-

ever, no single heuristic can make good decisions in every

environment because ecological rationality necessarily implies

specificity. The more ecological assumptions are built into a

heuristic, the less well it will generalize to environments in

which those assumptions are not met. Thus, the mind’s

‘adaptive toolbox’ most likely includes a panoply of heuristics

suited for use in different situations52–54. As candidate tools,

we and our colleagues have developed fast and frugal heuristics

for a variety of problems40, including categorization (see also

Ref. 55), mate choice, and quantitative estimation.

In natural environments, information comes in some

forms and not others. Ecologically rational heuristics not

only take specific environmental structures for granted, but

are tuned to work on specific information representations.

Unlike probability theory, real systems – whether computers

or brains – are not indifferent to how numerical information

is represented. For instance, a pocket calculator has an algo-

rithm for multiplication. However, because it is designed to

work on numbers entered in base 10 rather than base 2, it

would appear to have no algorithm for multiplication at all

if one gave it binary numbers as input56.

To what representations of numerical information

might our cognitive algorithms be tuned? The problems

typically used in research on inductive inference express 

information in terms of probabilities or percentages, which

are historically a very recent invention. They would not

have been encountered in any form in the environments of

our evolutionary ancestors, nor can they be directly experi-

enced today, notwithstanding their ubiquity in the media.

A more naturalistic way to represent numerical information

is in natural frequencies: absolute frequencies that have not

been normalized with respect to the base rates (see Box 1).

From these considerations we can predict that our cognitive

algorithms are more probably designed to reason about nu-

merical information in the form of natural frequencies

rather than probabilities.

One of the key findings of the heuristics-and-biases

program is that people overweight new data relative to base

rates in judging posterior probabilities in Bayesian inference

problems (e.g. the probability that a person who tests positive

for HIV really has it), which is generally referred to as ‘base-

rate neglect’10. Some of these results may be attributable to

the fact that the Bayesian model taken as normative ignores

relevant aspects of content or context33,61. Still, there are

problems in which the Bayesian answer seems appropriate

and yet to which people give decidedly non-Bayesian re-

sponses. How well would people solve these problems if the

information were presented in terms of natural frequencies

rather than probabilities? As it turns out, they look much

more like Bayesians (see Box 1 and Ref. 58). The reason

seems to be computational simplicity: whereas plugging the

necessary probabilities into Bayes’ theorem requires several

steps of multiplication and division, computing posterior

probabilities from natural frequencies boils down to simply

dividing the number of hits (e.g. people who test positive

and really have HIV) by the sum of hits and false alarms

(e.g. all people who test positive). In other words, the 

frequency representation does part of the work for us.

Teaching people to convert probabilities into natural

frequencies has been shown to be a powerful tool for train-

ing students in Bayesian reasoning59. Natural frequency rep-

resentations also help experts, such as physicians, to make

diagnostic inferences60 and have immediate applications in

other contexts, for instance, in helping AIDS counselors

and their patients interpret HIV test results61.

Social rationality

So far we have characterized Simon’s ecological blade strictly

in terms of the physical environment, but it reflects the 

social environment (the world of other organisms) as well.

We begin our discussion of ‘social rationality’ by describing

some situations in which adhering to social norms is rational

although it conflicts with internal consistency, which is often

seen as the defining feature of rational choice in decision

theory and behavioral economics.

In real-world social contexts, consistency in choice is

not always in one’s best interest. In competitive situations,

it is sometimes desirable to exhibit adaptively unpredictable,

or protean, behavior, so that other people and animals can-

not predict what one will do62,63. For example, our chances

of winning a tennis match would be compromised if our

opponent knew a stable, consistent order in which we chose

to serve to the left or the right during a match. Similarly,

when being pursued by a predator that might be able to 

outrun it, a prey animal would be unwise to flee along a

straight, predictable path, even if not doing so means taking

longer to cover the same distance62.

One of the basic principles of internal consistency in

choice is known as ‘Property a’. Informally speaking, it re-

quires that if you choose A over B, you should do so inde-

pendently of the other alternatives in the choice set. At first

blush, one might believe that all violations of Property a are

irrational. However, our social values and goals sometimes

conflict with this principle. Imagine, for example, that you

are at a dinner party. At dessert, it looks as if there are fewer

pastries than there are guests. By the time the dessert tray

gets to you, there is only one pastry left, a chocolate eclair.

If you know that another of the guests has not yet taken a

dessert, out of politeness you might choose to have nothing

over having the eclair. However, if the host were to replen-

ish the pastry supply, you might well choose to eat that

same eclair over having nothing. In other words, after

choosing B (nothing) over A (the eclair), you might choose

A over B just because other items were added to the choice

set.
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We have probably all violated Property a in similar 

situations. Does this make us irrational? Not if we take the

social environment into account64: being polite pays off.

Not being so could anger others and lessen the chances 

that other people will cooperate with us in the future. Thus,

for many of us, violating the social rule ‘don’t take the last
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Consider the way in which information is represented in the

following Bayesian inference problem (adapted from Ref. a):

The probability of breast cancer is 1% for a woman at age

40 who participates in routine screening. If a woman has

breast cancer, the probability is 80% that she will have a

positive mammography. If a woman does not have breast

cancer, the probability is 9.6% that she will also have a

positive mammography.

A woman in this age group had a positive mammography

in a routine screening. What is the probability that she

actually has breast cancer? (Answer: ____%)

Inserting the given numbers into Bayes’ thereom (see Fig.)

gives a posterior probability, p(cancer|positive), of 7.8%. However,

95 out of 100 physicians who solved this problem estimated the

probability to be between 70% and 80% (Ref. a), an order of

magnitude greater than that given by Bayes’ theorem. This is a

gross error, one that in a real medical context could have serious

consequences for patients’ well being (at least until a biopsy can

be performed). This apparent example of base-rate neglect

seems to justify the dire conclusions about human rationality

drawn in the heuristics-and-biases program.

However, notice that the mammography problem above is 

presented in terms of single-event probabilities (e.g. that a par-

ticular woman has breast cancer). Human cognitive algorithms

for this type of inference, if they exist, are most likely to be 

designed to operate on numerical information in the form in which

humans have gathered it over evolutionary history – natural fre-

quencies; that is, absolute frequencies that have not been nor-

malized with respect to the base rates. Here is how the mammog-

raphy problem looks when expressed in natural frequencies:

Ten out of every 1000 women at age 40 who participate

in routine screening have breast cancer. Eight out of

these ten women with breast cancer will get a positive

mammography. Of the 990 women without breast 

cancer, 95 will also get a positive mammography.

Here is a new representative sample of women at age 40

who got a positive mammography in routine screening.

How many of these women do you expect actually to

have breast cancer? (Answer: ____ out of ____)

When students who had never heard of Bayesian inference

were given problems like this one, they responded like

Bayesians in 46% of problems, whereas stu-

dents who received them in probabilities

solved only 16% correctlyb. Among physi-

cians with an average of 14 years profes-

sional experience, the benefit of frequency

information was equally strong (again 46%

made Bayesian responses compared with

10% given probabilitiesc). In a less complex

medical decision-making problem, the per-

centage of Bayesian solutions found with

frequencies rose to 76% (Ref. d).

Why should people reason so much 

better when given frequencies rather than

probabilities? Imagine two people trying to

solve the mammography problem (see Fig.).

While the person on the left struggles to

combine the probabilities according to Bayes’

theorem, the person on the right simply has

to divide the number of hits (women with

cancer and positive mammography) by the

total number of hits and false alarms (all

women with positive mammography). Thus,

instead of taking in frequency information,

converting it to probabilities, and plugging

them into Bayes’ theorem, the mind can

simply tally the frequencies and perform a

simpler computation. This is an example 

of how cognitive algorithms make the en-

vironment do some of the work for them:

natural frequencies carry base-rate information without explicitly

representing it.
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Box 1. Anyone can be a Bayesian

8 2

1000

95 895

10 990

p(H)
p(D H)
p(D -H)

p (disease   symptom)
0.01 × 0.80

0.01 × 0.80 + 0.99 × 0.096
=

= 0.01
= 0.80
= 0.096

p (disease   symptom)
8

8 + 95
=

Fig. Differential complexity of Bayesian computations based on probabil-
ities (left) and natural frequencies (right). (see text for explanation.) (©1995,

American Psychological Association; modified, with permission, from Ref. b.)



piece of cake’ carries higher costs than violating Property 

a, which, after all, will only offend a handful of decision

theorists and economists. Of course, we can always account

for this example of inconsistency by arguing that the nature

of the eclair changed with the change in the choice set; 

that is, it ceased to be the last dessert. But the point here

is that if we allow the meeting of social expectations into our

definition of rationality, then we can predict such choices

rather than having to explain them post hoc.

Another context in which being socially rational re-

quires deviating from a content-blind norm is in the famous

‘Linda problem’. In this problem participants read: ‘Linda 

is 31 years old, single, outspoken, and very bright… As a

student, she was deeply concerned with issues of discrimi-

nation and social justice…’ They are then asked to choose

which hypothesis is more ‘probable’: that Linda is a bank

teller (T) or that Linda is a bank teller and is active in the

feminist movement (T1F). In most studies, 80–90% of

participants rank T1F as more probable than T (Ref. 65).

This effect – known as the conjunction fallacy – is widely

interpreted as a violation of the conjunction rule, according

to which the probability of a conjoint event cannot exceed

the probability of any of its constituents.

In the Linda problem, participants have to infer what

the experimenter means by ‘probable,’ a term that in natural

language has multiple, related meanings, most of which

cannot be reduced to mathematical probability (e.g. ‘plau-

sible’ or ‘conceivable’). Which of these meanings do they

infer? One possible answer can be derived from Paul Grice’s

theory66 of conversational reasoning, which holds that it 

is reasonable for the audience (participant) to assume that

the communicator (experimenter) will follow certain social

rules governing communication. If they assume that the

‘relevance maxim’, by which the audience expects the 

communicator’s contribution to be relevant to the conver-

sation, applies in the Linda problem, participants should

infer that ‘probable’ does not refer to mathematical prob-

ability, because a mathematical interpretation would render

the description of Linda irrelevant to the requested 

judgment67.

Based on this analysis, one can construct a social 

context in which people following the relevance maxim 

are more likely to infer a mathematical meaning. If, im-

mediately before the probability judgment, participants are

asked for a judgment that renders Linda’s description 

relevant – such as a typicality judgment (i.e. ‘How good an

example of a bank teller is Linda?’) – then adherence to the

conjunction rule should increase. Indeed, this is what

Hertwig observed68: among participants asked to make a

typicality judgment first, the percentage following the 

conjunction rule was on average 40 percentage points

higher than that among participants who made the prob-

ability judgment immediately. It has also been shown that

asking participants to estimate frequencies in conjunction

problems (e.g. ‘How many people like Linda are bank

tellers?’) dramatically increases the percentage of judgments

consistent with the conjunction rule65,69, perhaps because

the frequency representation eschews the ambiguity of the

term ‘probable’68. Conversational analysis has revealed still

other relevance-preserving inferences drawn in the Linda

problem that lead participants to violate the conjunction

rule (e.g. Ref. 70).

Such re-analyses of apparent cognitive biases highlight

the hazards of confusing with irrationality the human 

ability to make intelligent semantic and pragmatic infer-

ences71. Many researchers are pushing the limits of our

knowledge about social rationality in still other ways by

studying, for instance, how people reason about deontic

conditionals (relating to duty or obligation) and social 

contracts53,72–74, and how emotions, traditionally thought 

to undermine reason, might actually help people to think

and decide rationally75,76. This research demonstrates that

social values and goals deserve a place in both cognitive 

explanations and definitions of rationality.

Conclusion

We began by challenging the classical vision of human 

rationality as adherence to the norms of probability 

theory and logic. Not only are these norms inherently 

problematic when applied without regard to content 

and context, but they fail to capture what it means to be 

rational either in ancestral environments or in the modern

world. The mind has evolved to tackle important adap-

tive problems, not to solve mathematical brain-teasers. 

We argue that to discover how the mind works, and how

well, we need to understand how the mind functions 

under its own constraints – its bounded rationality – and

how it exploits the structure of the social and physical 

environments in which it must reach its goals – its eco-

logical rationality. By adding these perspectives to our 

theoretical scope, we broaden and deepen our vision of 

rationality.
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Outstanding questions

• It has been proposed that the mind has an ‘adapative toolbox’ of
specialized cognitive heuristics suited to different problems52–54. 
What heuristics are in the adaptive toolbox? What environmental cues
might determine whether one heuristic is triggered as opposed to
another?

• What are the structures of the environments in which specific heuristics
perform well or badly, and why? To what extent are people sensitive to
these structures and in what terms can we describe them?

• The recognition heuristic relies on recognition memory, which develops
early ontogenetically and arose early phylogenetically. What other
fundamental psychological abilities might serve as building blocks for
fast and frugal heuristics?

• What criteria other than accuracy (e.g. speed, computational complexity)
are relevant to evaluating the performance of different heuristics? How
well do fast and frugal heuristics fare relative to optimal ones by these
criteria? Which heuristics come closest to mimicking human performance
on these various measures?

• What role do emotions and culture play in bounded rationality? How
might specific emotions, such as love and disgust, help people to make
adaptive decisions (e.g. by stopping information search)? Does following
social norms provide a fast and frugal way to bypass deliberation by the
individual?
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The power of stereopsis in generating percepts of three-

dimensional (3-D) structure is now so familiar that it has

become a staple of our entertainment diet. It is difficult not

to marvel at the transformation of flat, two-dimensional im-

ages into a full 3-D percept that causes objects to ‘jump off’

the page. This review describes some recent results that re-

veal the potency of stereovision in shaping our perception of

the world, and sketches some general theoretical insights

about visual processing that have been gained from this field

of research.

To understand the computational problem the visual

system must solve in stereopsis, consider how images are

generated when natural scenes are viewed binocularly. Vision

depends on how light is reflected onto our two retinal 

surfaces from external surfaces in 3-D space. Surfaces can

vary in reflectance, depth, and transmittance, all of which

can affect the way that images are formed on the two 

retinae. One natural way to think about vision is as a reverse

image formation process: given a series of images, what are

their most likely causes? To answer this question in stereo-

vision, the visual system must infer the transformations that

relate the images in the two eyes, and recover the infor-

mation that these transformations provide about the three-

dimensional world.

Historically, the informational basis of stereopsis was

thought to be specified by the pattern of binocular ‘dispar-

ities’ computed from the two images1–11. Disparity refers to

the difference in the visual direction of two or more points

in space. When two points are situated at different depths

from the observer, their angular separation will be different

in the two eyes. The difference between these separations is

the disparity (or relative disparity) of image features, which

can be used to infer their depth. In order to compute dis-

parity, the visual system must have some means of solving

the correspondence problem, that is, of determining which

features in the two eyes correspond to a common surface

feature in the 3-D world. Until recently, it was thought that

the problem of stereovision was solved once correspondence

was determined and disparity was computed. For this rea-

son, virtually all of the theoretical work in stereovision over

the past few decades has focused on developing solutions to

the problem of matching.
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One of the most powerful sources of information about three-dimensional (3-D)

structure is provided by stereovision (or stereopsis). For over a century, theoretical and

empirical investigations into this ability have focused on the role of binocular disparity

in generating percepts of 3-D structure. Recent work in image segmentation

demonstrates that stereovision can cause large changes in perceptual organization that

cannot be understood on the basis of binocular disparity alone. It is argued that these

phenomena reveal the need for theoretical tools beyond those that have dominated

the study of visual perception over the past three decades.
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