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Connectionist parsers are neural-network-based
systems (see Boxes 1 and 2) designed to process words
or their syntactic types (tags) to produce a correct
syntactic interpretation, or parse, of complete sentences.
Parsers vary greatly in the way in which they tackle
syntactic processing, and this is reflected in their
modularity (or non-modularity) and in whether they
combine neural networks with conventional symbolic
processing to provide a hybrid solution, or adopt a
purely connectionist approach.

Modularity and hybridity are reviewed as key
attributes of connectionist parsers concerned with
how the parsing problem is decomposed into (usually
simpler) modules to form a parsing system, consisting
of one or more connectionist modules and zero or more
non-connectionist (e.g. symbolic) modules. The level
of realism of parsers is assessed, by which we mean
the ability of connectionist parsing systems to capture
naturally occurring linguistic structures, behaviours
and processing limitations. We discuss the extent to
which parsers are able to capture the syntactic
constraints and structures that naturally occur in

language, as opposed to being limited to artificial
grammars that restrict them to processing very small
sub-domains of the language.

Modularity and hybridity

Psycholinguistic and fMRI-based evidence suggests
that there is a significant component of purely syntactic
processing of language that precedes and is
independent of semantic processing [1]. This evidence
can be taken as support for a syntactic module in a
Fodorian sense [2], in that it is consistent with
information encapsulation and spatial separation 
of processes. However, there is little consensus in
terms of the details of how the syntactic module and
its processing might be decomposed into separate
modules performing distinct tasks. Within the
connectionist research programme, many versions of
modular architecture have been proposed, and as the
neurocognitive evidence is still unclear, connectionists
are free to explore the computational plausibility of
different architectures. When a proposed architecture
shows human-like performance on some aspect of
syntax, it can be claimed as evidence of cognitive
plausibility, but thus far no systems have been
extended to a truly convincing range of language
structures. What is clear, however, is that modular
and hybrid parsers trained on corpora continue to
make significant progress. Indeed, for large scale
parsing, although there is little support for the
eliminative connectionist viewpoint, which claims
that purely connectionist systems are in principle
capable of cognitive functions including language
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processing, there is some support for those such as
Pinker and Marcus [3], who point out that essentially
symbolic processing devices such as registers need 
to be combined with neural networks in systems such
as parsers.

Singular architectures
A common, singular (non-modular) localist (see Box 2)
approach has been to represent the syntactic structure
(or parse tree) of a sentence explicitly by patterns of
activation between layers of units. The units represent
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Multi-layer perceptron (MLP)

In artificial neural networks (ANN), each node (or neuron) calculates the
level of a feature that is present on its inputs, which comes either from
the ouside world or from other nodes. The particular feature is usually
dependent on the weights on the inputs, and these weights can be
adapted during a training phase, so that the feature represented by each
node can be learned experientially, rather than hardwired in advance.

MLPs are the most commonly used and general purpose ANN
architectures. They have an input layer, one or more hidden layers, and
an output layer (see Fig. I). The standard MLP has complete connectivity
between all the nodes of one layer and the nodes of the next. Each input
to a node is multiplied by a weight associated with the connection. The
output of a node is the sum of these weighted inputs after it has been put
through a transfer function. The transfer function is usually non-linear
(the sigmoid function is the most commonly used). This allows the
network to model non-linear relationships between the inputs and
outputs. A common form of training involves propagating the difference
between the desired and actual outputs for a given input (i.e. the output
error), back through the network, adjusting the weights so as to reduce
this error. This is known as back-propagation and is done repeatedly for a
set of training input–output pairs.

Simple recurrent network (SRN) [a]
The more specialized SRN architecture is aimed at processing inputs that
consist of sequences of patterns of variable length. It does this by
including in the input the activations of the hidden layer for the previous
step in the sequence (see Fig. II). This allows the network to include

information relating to all the previous steps in a sequence in its
processing of the current stage. The network ‘remembers’ what has
gone before, forgetting only gradually as it progresses through the
sequence. To do the same in an MLP, the input window would have to
accommodate, instantaneously, all of the input patterns for the longest
sequence. However, even in an SRN, successful training can be difficult
to achieve because of significant variation in the length of sequences
that it is required to learn.

Recursive Autoassociation Memory (RAAM) [b]
An autoassociative network is an ANN trained to generate the input
activations at the output. If this is achieved with an MLP having one
hidden layer, the hidden layer activations for a given input will then
become an alternative representation of that input. Such a network 
can be used to encode and decode compressed representations of
symbolic structures such as trees, and it is then known as a recursive
auotassociation memory, or RAAM. The compressed representation
generated at the output for two daughter nodes of a tree, for example,
becomes the input representation of their mother node when the
representation for the next stage of the tree is generated, hence the 
term ‘recursive’.

Localist networks

In a localist network (as opposed to a distributed one; see Box 2), the
nodes are localist in nature – that is, excitation on a given node 
indicates the presence of the corresponding linguistic structure. Localist
networks for parsing usually incorporate ‘spreading activation’ and
‘lateral inhibition’; that is, they support bidirectional excitatory
connections between nodes in adjacent layers, and inhibitory
connections between nodes within a layer (and between layers) 
(see Fig. III). This allows the node activations to settle into mutually
consistent patterns. The exact connectivity of a given network is specific
to the application, and is often designed to support a particular
grammatical formalism.
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Box 1. Artificial neural network architectures
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symbols or concepts drawn from either symbolic
grammar rules [4–7], word senses, syntactic roles or
semantic roles [8–10]. Many distributed parsing models
employing a single neural network have also been
developed, using either a feedforward multi-layer
perceptron (FF-MLP) network [11,12], a simple
recurrent network (SRN) [13,14] or a fully recurrent
network [15] (see Box 1). To process linguistic input,
which is sequential by nature, FF-MLPs typically
require a temporal (or sliding) input window of
sufficient width (i.e. with a sufficient number of input
units) to process the largest grouping of constituent
symbols that could signify a parser action. This
approach is inefficient as the window width is defined
by the worst (longest) case, and for all other cases
there is redundancy involved in processing the entire
window. These limitations were reflected in early
distributed connectionist parsers with temporal input
windows [11,12].

The simple recurrent network (SRN)
SRN-based architectures (Box 1) belong to the class of
recurrent neural networks (RNNs) that implement
temporal processing with feedback connections which
allow them to establish temporal relationships across
sequential input items. SRNs are computationally more
powerful than FF-MLP networks for automatically
inducing grammatical constraints and structure
through supervised learning [13,14,16]. For example,
SRNs (and RNNs generally) are able to learn regular
languages by forming a continuously-valued
representation of a corresponding discrete finite-state
machine (FSM) when trained to predict the next symbol
(e.g. word) within a sequence (e.g. sentence) [13,17].
However, it is generally accepted that natural languages

are not strictly regular languages but actually lie
between the classes of context-free and context-sensitive
languages [18]. This would suggest that additional
external apparatus, such as symbolic or neural stacks or
registers, are required to extend SRNs to non-regular
languages that support embedded and context-sensitive
structures. Some have indeed used SRNs with external
stacks for language parsing [19–24], although others
have used alternative RNNs with external stack
memories [25].

Rather than introducing additional apparatus to
process natural language, several researchers have
focused their attention on using dynamical systems
theory [26] to understand and interpret the
representations formed and dynamic behaviours
(transitions made between hidden states) exhibited
by RNNs when they are expected to process irregular
languages. Such studies have shown that SRNs learn
simple counting functions to process deterministic
context-free languages [27]. More recently it has been
shown that SRNs are able to generalize to a subset 
of context-sensitive languages beyond the training
data [28], however performance degrades rapidly
with respect to the length of the input. Although these
studies also show that the behaviour of SRNs is
unstable with respect to complexities associated with
irregular languages, SRNs are able to generalize to
structures considered beyond the computational power
of an FSM and the memory limitations exhibited have
been shown to be comparable to human memory
limitations during sentence processing.

Modules
The first modular distributed parsers appeared in the
early 1990s and typically consisted of combinations of
FF-MLP, SRN and RAAM architectures. The motivation
to decompose the parsing task into sub-modules is
often: (1) to simplify the network’s learning task, and
to reduce training set size and complexity; and/or (2) to
evaluate the computational and cognitive plausibility
of a given composition of modules. The wide range of
modules that has been tried reflects the respective
strengths and weaknesses of FF-MLPs, SRNs, and
RAAMs. FF-MLPs are general-purpose pattern
recognizers and function approximators, and therefore
it is unsurprising that they have been used to
compress [20], transform [29] and compare patterns
representing words, phrases, clauses, and semantic
and syntactic roles [30]. SRNs, by virtue of sequential
input and feedback to context nodes, are more suited
than FF-MLPs to recognizing a sequence or identifying
an action based on a sequence, where the sequence is
presented incrementally through time. Thus, SRNs
lend themselves naturally to segmenting sentences into
case-roles [21,31] and phrases [30,32], to signifying
shift-reduce actions [22], and to recognizing phrases
through time [23,24,30]. RAAMs, because of their
autoassociative coding and decoding properites, 
have been used to encode (storing them in a
compressed form) and decode symbolic parse trees
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ANNs are said to represent specific concepts either in a
localist way or in a distributed way. In a localist
representation there is a one-to-one mapping of
concepts or features onto nodes. For example, Fig. Ia
shows a localist representation of the vowels: one vowel
maps onto one and only one feature. In a distributed
representation (Fig. Ib) the representations for several
vowels are determined by levels of activation (indicated
here by variation in grey level) across common nodes.

Box 2. Localist and distributed representations
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and phrases [21,23,34,35]. Neural networks
developments in the form of FF-MLPs, SRNs and
RAAMs, and the learning processes they use have
strongly influenced the modular decomposition of
connectionist parsing.

Hybridity
Only pure connectionist parsers such as those 
of [21,34,36] attempt every aspect of the parse with
neural networks and perform no symbol manipulation
other than to interpret system outputs. When symbolic
modules or processes are included, the result is a
hybrid connectionist parser. In hybrid parsers the
symbolic modules have commonly been assigned to
tasks such as: (1) short-term storage to hold
intermediate parse states, current input states and
full sentential parses (stacks and buffers); (2) long-term
storage to hold structured knowledge about language,
such as grammar rules, semantic networks, and tree
structures; and (3) symbol manipulation and
communication to control the parsing process and
coordinate interactions between (connectionist)
modules. Pure connectionist parsers have attempted
to avoid using symbolic modules by implementing
connectionist architectures to act as stack memories
and associative memories.

Realism

Convergence of psycholinguistic studies and
connectionist parsing
A dominant theory of Human Sentence Processing
(HSP) is a modular two-stage model [37] in which an
independent processor provides an initial syntactic
structure using only syntactic information. A second
processing phase allows semantic and discourse
information to be used to enable the parser to revise
the initial structure. Lexical and syntactic processing
are considered to be separate because it is hypothesized
that lexical representations are retrieved whereas
syntactic representations are constructed [38].
However, there is an increasing body of research that
rejects this view and argues that HSP is a multiple
constraint-satisfaction process that allows syntactic,
semantic and discourse information to simultaneously
interact (to varying degrees) during on-line
processing [39,40,41]. The psycholinguistic evidence
suggests that syntactic structure is projected from a
mental lexicon enriched with word representations
containing syntactic, semantic, and discourse
information together with the frequency and
probabilistic relationships that hold amongst them.
Syntactically ambiguous sentences are commonplace.
In the sentence, ‘Gill saw the man with the telescope’,
we don’t know whether the man or Gill has the
telescope, and the two possiblities are syntactically
distinct, suggesting the need for semantic intervention
in the parsing process. Furthermore, psychologists
have for decades accumulated evidence for the
emergence of tentative interpretations of sentences
occurring before a definitive parse [42].

Connectionist models can be employed as the
processing mechanisms to develop and evaluate
constraint-satisfaction theories [39,43] and there is
some evidence that connectionist research into
syntactic processing is beginning to converge with
psycholinguistic theories. Early localist parsing
models were able to provide some account of human
syntactic and semantic attachment preferences,
whereby alternative interpretations remain active
until they become incompatible with the rest of the
sentence [8,9,10]. However, these techniques were
based on a limited set of grammar rules. Stevenson’s
CAPERS model [44] extended localist parsing
techniques further using a symbolic module, based on
the principles defined in Chomsky’s Government and
Binding (GB) Theory [45]; activation representing
grammatical constraints is communicated between
neighbouring units within a localist network that
settles to a steady state of activations explicitly
representing a parse tree. Stevenson demonstrated
that CAPERS is able to establish long-distance
dependencies between constituents without specially
designed heuristics and addresses some of the
psycholinguistic data reported by Stowe [46] and Nicol
(J. Nicol, Ph.D thesis, MIT, Boston, MA, 1988). More
recently, Stevenson and Merlo have used CAPERS to
show that differences between unergative verbs
(e.g. ‘the horse raced past the barn fell’) and unaccusative
verbs (e.g. ‘the butter melted in the pan was brown’) at
the lexical level significantly influence processing
difficulty of sentences with ambiguities.

Although perhaps not directly motivated by the
constraint-based theories per se, Hadley et al.’s [47]
localist model supports the interaction of syntactic and
semantic information. They proposed a self-organising,
Hebbian-inspired, competitive network that was able
to predict the coarse semantic features of the next
word within a sentence for a small language domain.
It was also able to predict syntactically key words,
such as prepositions and relative pronouns. The model
is significant because it generalised to structures of a
complexity beyond that found in the training data
and demonstrated strong syntactic systematicity in
that it was able to recognize noun phrases in new
(untrained) syntactic positions.

Connectionists have also exploited the advantages
of distributed representations. St John and McClelland
presented a modular connectionist account of the
multiple constraint-based model using two MLP-based
networks [48]. The model assigns thematic roles
(e.g. agent and action) to predetermined syntactic
phrases (constituents) of simple single-clause sentences
based on syntactic and semantic constraints. It builds
a single distributed representation of the sentence,
called the ‘sentence gestalt’, which is adjusted as each
constituent is processed. Given a word from a sentence
it is able to reproduce the thematic role assigned to
that word. Although evaluated using a very limited
language, it was able to anticipate future constituents,
and also learnt semantic regularities about the age of
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agents to predict appropriate objects. The main
limitation of this approach is the inefficient localist
representation used on input/output layers, which
provides little promise of scaling-up to work on
realistic language sources.

Pearlmutter et al. [49] proposed an FF-MLP-based
model directly inspired by the constraint-based
framework presented by MacDonald et al. [40,43].
The localist input representation for nouns contained
information such as subject animacy, voice and presence
of a direct object. Verb representations contained
information such as a unique indentifier for the verb
and a set of simple semantic features. Given this input
on the input layer the FF-MLP was expected to produce
the appropriate verb argument structure on the output
layer. After being trained on a set of 60 unambiguous
verbs and associated argument structures extracted
from the Wall Street Journal corpus, the FF-MLP was
tested on a modified training set. The training set 
was made ambiguous by removing the influence of
voice and direct object inputs. The resulting
behaviour of the system provided strong support for
constraint-based theories. Pearlmutter et al. reported
that the frequency of argument structures found
within the corpus directly influenced the processing of
verb ambiguities.

Realism beyond context-free grammar
Modular connectionist parsers that do not rely on a
connectionist module such as RAAM to encode
explicit structure have been able to capture realistic
natural language structures from natural language
corpora annotated with syntactic information. These
parsers, for example those of Wermter and Weber [30],
Lane and Henderson [19], and Tepper, Powell and
Palmer-Brown [32,33] induce implicit grammars
(that need never be expressed in the form of symbolic
rules) via learning the underlying linguistic
constraints contained in the annotations of corpus
texts. To achieve this, connectionists have focused on
using SRNs to perform tasks such as phrase boundary
identification [31,32,33] and recognition of constituent
dependencies [19], and on FF-MLPs to perform tasks
such as phrase structure classification [32,33]. In these
hybrid models, the symbols representing syntactic
structure are represented by patterns which are
processed and recognized by connectionist modules.

Embedding and cross-serial dependencies
SRNs can process cross-serial dependencies 
(in which the correct interpretation of the syntactic

role of a word or phrase is dependent on that of
another word or phrase separated from it by several
words) when there are local dependencies between all
the intervening words [13], and SRNs can also carry
information over embeddings without local
dependencies if the number of intervening words 
was small [14]. In addition, Christiansen and 
Chater [50] have demonstrated that an SRN is able 
to process centre-embedding and cross serial
dependencies (albeit based on simple context-free
grammars) in a manner analogous to the human
performance found in psycholinguistic data, in which
the ability to process embeddings and serial
dependencies is limited. Miikkulainen, whose parser,
CLAUSES [31], used a combination of four SRNs,
found it easier to process tail recursion (e.g ‘The
woman blamed the man, who hit the girl, who blamed
the boy’) than relative clauses located in the middle 
of a sentence (e.g. ‘The woman, who the boy, who the
girl blamed hit, blamed the man’) because the latter
case requires longer sequences thus taxing the
memory capacity further. The memory degradation 
in SRNs is due to previous input information being
degraded and ultimately lost as more input is
recursively encoded; this type of degradation also
applies to RAAMs [51], although the level of
embedding that a RAAM is capable of encoding can 
be reliably determined [52].

Conclusion

Connectionism is sometimes characterized as a
unified approach to computation and cognition, 
with obvious strengths, such as the ability to acquire
new information, and obvious weaknesses, such as
limited recursive capabilities, and lack of
systematicity. However, a review of connectionist
parsing demonstrates that there are several related
approaches, ranging from modular systems that mix
symbolic processing with neural network processing,
to systems that consist entirely of one or more neural
networks and that learn to process syntax entirely
from examples. Connectionist parsing is still
negotiating its relationship with the world of symbols,
but the current evidence supports a hybrid approach.
The continued improvement in performance of
connectionist parsers seems likely to be dependent on
the discovery or development of more powerful neural
network learning processes and architectures, that
can effectively assimilate the vast quantity of complex
information associated with human language
processing ability.
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