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Chapter 2: Advantages And 
Disadvantages Of Modeling 

 
2.1 WHAT IS A MODEL? 

 
In science, phenomena that are difficult to study or to understand in their own right are 

often approached through the use of models.  The kinds of models that are used are as diverse 
as science itself.  In biology, model organisms are used to study processes that cannot be easily 
measured in humans.  In engineering, models of physical structures are tested in wind tunnels.  
Some might argue that physics is concerned with the development and testing of mathematical 
models of physical systems  

 
Even within a single discipline, one can find a bewildering diversity of model types.  For 

example, in psychology, computer simulation models have been created for many cognitive 
phenomena (Boden, 1977; Feigenbaum & Feldman, 1995; Grossberg, 1988; VanLehn, 1991). 
Mathematical models have been used to study human perception, learning, judgments and 
choice (Bock & Jones, 1968; Caelli, 1981; Restle, 1971). Statistical models have become the 
primary tool for expressing relationships between variables  (Lunneborg, 1994; Pedhazur, 1982; 
Winer, 1971).  Model organisms, such as the long-finned squid Loligo pealei, have been used to 
help understand the generation and transmission of nervous impulses (Hille, 1990; Levitan & 
Kaczmarek, 1991). 

 
A famous philosophical passage highlights the perils of defining even the simplest of 

terms: “Consider for example the proceedings that we call ‘games’. I mean board games, card-
games, ball games, Olympic games, and so on. What is common to them all? -- Don't say: ‘There 
must be something common, or they would not be called 'games' ‘-but look and see whether 
there is anything common to all” (Wittengstein, 1953, p. 31e). Given the diversity that we have 
briefly noted above, the term ‘model’ could just have easily been used to demonstrate this point!  
Wittgenstein went on to argue that there was only a family resemblance between members of a 
category. “For if you look at them you will not see something that is common to all, but 
similarities, relationships, and a whole series of them at that.”  The features that constitute these 
similarities and relationships change as different members of the same class are compared to 
one another.  What kind of family resemblance would we find amongst the members of the class 
‘model’? 

 
Intuitively, a model is an artifact that can be mapped on to a phenomenon that we are 

having difficulty understanding.  By examining the model we can increase our understanding of 
what we are modeling.  “A calculating machine, an anti-aircraft ‘predictor’, and Kelvin’s tidal 
predictor all show the same ability.  In all these latter cases, the physical process which it is 
desired to predict is imitated by some mechanical device or model which is cheaper, or quicker, 
or more convenient in operation” (Craik, 1943, p. 51). 

 
For it to be useful, the artifact must be easier to work with or easier to understand than is 

the phenomenon being modeled.  This usually results because the model reflects some of the 
phenomena’s properties, and does not reflect them all.  A model is useful because it simplifies the 
situation by omitting some characteristics.  “Any kind of working model of a process is, in a sense, 
an analogy.  Being different it is bound somewhere to break down by showing properties not 
found in the process it imitates or by not possessing properties possessed by the process it 
imitates” (Craik, 1943, p. 53).  Similarly, “the word model may be used instead of theory to 
indicate that the theory is only expected to hold as an approximation, or that employing it 
depends upon various simplifying assumptions” (Braithwaite, 1970. p. 269). 
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While a model can imitate a phenomenon, it need not resemble it.  “Kelvin’s tide-
predictor, which consists of a number of pulleys on levers, does not resemble a tide in 
appearance, but it works in the same way in certain essential respects – it combines oscillations 
of various frequencies so as to produce an oscillation which closely resembles in amplitude at 
each moment the variation in tide level at any place” (Craik, 1943, p. 51).  Similarly, Galileo 
revolutionized science by using geometry to represent physical quantities like velocity and 
acceleration that do not themselves resemble lines or angles (Haugeland, 1985).  

 
Of course, consistent with Wittgenstein’s notion of family resemblance, none of the 

claims made in the preceding paragraphs apply equally well to every model.  For instance, some 
models are less analogous than others.  The properties of the ionic channels in one model, the 
giant axon of the squid, are expected to correspond perfectly to the properties of the same 
channels in the human nervous system (Kuffler, Nicholls, & Martin, 1984). Similarly, some 
models, such as the scale models of structures that are tested in wind tunnels, have much 
stronger resemblances to entities in the real world than do other kinds of models. 

 
One property that does seem common to all models, though, is the notion of predictive 

utility.  A model is used to generate predictions that can be used to test the validity of a theory.  
The model is used because in some sense it provides an easier or faster route to prediction.  
Later in this book we will see that the many different kinds of models available to psychology can 
be used in a variety of ways, and that in some sense it is not correct to describe the models of 
synthetic psychology as providing “predictive utility”.  Prior to embarking on that much longer 
discussion in later chapters, let us first turn quickly to considering some of the advantages and 
disadvantages of using models in general. 

 
2.2 ADVANTAGES AND DISADVANTAGES OF MODELS 

 
Modeling in psychology or cognitive science is associated with both advantages and 

disadvantages (e.g., Lewandowsky, 1993).  In this section of the chapter, we will consider three 
general advantages of modeling.  However, after each of these three advantages, we will follow 
with a discussion of associated disadvantages.  Models are like fine knives with which you can 
create gourmet meals, but with which you can also cut off your fingers. 

 
2.2.1 Rigorous Specification Of Theory 

 
“Theory in a field as immature as psychology cannot be expected to amount to much -- 

and it doesn’t” (Royce, 1970. p. 17). There are many reasons for skepticism about the quality of 
psychological theory.  Some researchers have argued that psychologists, envious of physics, 
attempted to develop quantitative theories without first laying a proper qualitative foundation 
(Kohler, 1975). Others would argue that whenever psychological theories are expressed verbally, 
they are necessarily vague and imprecise.  As well, there is a long tradition in experimental 
psychology of being extremely wary of verbal data (Ericsson & Simon, 1984). It would not be 
surprising if there were an accompanying wariness of verbally or informally stated theories. 

 
How do you make theories better?  Many researchers would argue that this is 

accomplished by translating an informal verbal theory into a formal mathematical expression or 
into a working computer simulation.  "Even deceptively simple models can benefit from the rigor 
of simulations" (Lewandowsky, 1993, p. 236). 

 
2.2.1.1 Precision Of Terms 

 
There are several reasons that the process of formalization is useful.  First, it adds 

precision in specifying theoretical terms.  An informal theory can be full of references to terms 
with vague definitions like “memory" or "attention".  Many academic debates emerge because 
different researchers use the same terms in different ways.  In a formal model, conceptual terms 
have to be carefully operationalized in order for the model to work.  This forced precision enables 
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the theorist to communicate his ideas to others less ambiguously then would be the case if the 
theory were communicated as an informal statement. 

 
One interesting historical example of this can be found in experimental aesthetics.  One 

of the main goals of this discipline was to measure subjects’ responses or preferences, and to 
relate these measurements to properties of the works of art or other objects that were presented 
(Berlyne, 1971). In this field, it has proven difficult to specify both properties of stimuli and 
properties of preferences.  For example, the Gestalt psychologists introduced the notion of 
"goodness of configuration" with their Law of Prägnanz (Kohler, 1975). According to this law, we 
perceive organized patterns instead of isolated elements, and we actively organize these patterns 
to make them “good".   

 
Unfortunately, the definition of good in the Law of Prägnanz was particularly vague: 

"psychological organization will always be as ‘good’ as the prevailing conditions allow.  In this 
definition the term ‘good’ is undefined.  It embraces such properties as regularity, symmetry, 
simplicity and others" (Kohler, 1975, p. 110).  Berlyne (1971) revolutionized the field with 
formalization, in particular by characterizing stimulus properties numerically using definitions of 
complexity and redundancy that were taken from mathematical information theory.  Berlyne took 
the same approach to the notion of preference, formalizing emotion in terms of arousal.  Berlyne’s 
approach led to extremely vibrant study of aesthetics by experimental psychologists in the 1960s 
and '70s.  The renaissance of the field was largely driven by the fact that Berlyne’s formalization 
permitted researchers in different labs to have more precise understanding of the stimulus and 
response properties that were being studied in diverse experiments. 

 
2.2.1.2 New Tools For Studying Concepts 

 
A second advantage of formalization comes from recognizing that the language in which 

a theory is expressed determines the kinds of ways in which the theory can be tested or explored.  
For instance, after a verbal theory has been formalized mathematically, one can use 
mathematical operations to investigate its implications (Coombs, Dawes, & Tversky, 1970; 
Lunneborg, 1994; Wickens, 1982). In other words, formalization not only results in a more precise 
specification of the concepts in the theory, but also results in a more precise set of tools for 
studying these concepts. 

 
One example of this can be found in my own research on how the human visual system 

tracks the identity of moving targets (Dawson, 1991). In one approach, I converted a general 
theory of this tracking into a particular type of computer simulation.  I was then able to use the 
simulation to generate hypotheses about what human subjects would see when presented 
apparent motion displays that had never been studied before (Dawson & Pylyshyn, 1988). In a 
second approach, I formalized the theory using some of the elementary operations of linear 
algebra.  With this formalization, I was able to prove that the computer simulation would generate 
unique solutions to tracking problems.  I was also able to prove that there was a strong 
relationship between my model and a more general model that was unrelated to motion 
processing (Hopfield, 1982).  The algebra showed that both models could be described as 
minimizing identical energy functions.  Both of these proofs were examinations of crucial 
characteristics of my theory, but would have been impossible to conduct had the model not been 
expressed algebraically. 

 
2.2.1.3 Revelation Of Hidden Assumptions 

 
A third advantage of formalization is that it can reveal hidden assumptions in an informal 

theory which themselves need to be fleshed out in greater detail in order for the theory to be 
complete.  For example, many theories in cognitive psychology are expressed as flowcharts of 
black boxes.  Ideally, each black box in such a flowchart is supposed to be a primitive operation 
that needs no further explanation (Cummins, 1983; Dawson, 1998).   Bringing the flowchart to life 
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in, for instance, a computer simulation can reveal that some of these alleged primitives are 
themselves very complicated processes that require further analysis and explanation. 

 
As a case in point, consider the study of vision.  For most people, visual perception is 

extremely easy: we just look at something and see it.  Because of this, artificial intelligence 
researchers believed in the 1960s that it would be very straightforward to build computer vision 
programs.  “In the 1960s almost no one realized that machine vision was difficult” (Marr, 1982, p. 
16). Indeed, Marvin Minsky has admitted that he assigned computer vision to a student as a 
summer programming project (Horgan, 1993). However, when serious attempts were directed 
towards programming a machine to see, astonishing difficulties arose.  It became painfully 
obvious that underlying the process of seeing was a set of enormously complicated information 
processing problems that the human visual system was solving effortlessly in real time.  
Identifying the nature of these problems, let alone solving them, became a staggering challenge 
for vision researchers – and the core of a new discipline.  Vision research has obviously benefited 
from attempts to formalize our intuitions about perceptual processing. 

  
2.2.2 Problems With Formalization 

 
We have seen in the preceding section that one general property of the model is that it 

can result in the conversion of an informal theory into a theory that is stated more rigorously or 
more precisely.  We've also seen that there are several advantages to doing this.  However, it is 
important to realize that the formalization of the theory can also be hazardous.  Let's briefly 
consider some potential disadvantages of formalization. 

 
2.2.2.1 The Irrelevant Specification Problem 

 
One potential problem with formalization is that this process requires a researcher to 

make design decisions.  For instance, in a computer simulation one might have many possible 
ways for representing information.  To build a model, one of these representational formats must 
be selected.  The hope is that the specific choice is theory-neutral.  If the choice is theory-neutral, 
this means that the simulation will behave in the same manner whatever representational format 
is chosen.  However, this is often not the case.  Many design decisions are theory-laden.  In other 
words, the behavior of the model is affected by the design decisions.  With one representational 
code a computer simulation might behave one way, but it will behave differently with another 
representational code.  Lewandowsky (1993) calls this the irrelevant specification problem. 

 
To illustrate the irrelevant specification problem, let us consider a model of how human 

subjects perform in a particular memory task.  One of the earliest techniques for studying memory 
was the paired-associate learning task (Ashcraft, 1989). In this task, subjects were presented 
pairs of consonant-vowel-consonant nonsense syllables (CVCs), such as XOP-LUD.  When 
presented the first member of the pair, subjects’ task was to remember the second member of the 
pair.  So, when presented XOP a subject would respond with LUD.  The dependent measure for 
this task was usually the number of trials that were required before a short list of these pairs was 
remembered perfectly.  The paired-associate learning task was central to the study of 
interference theories of forgetting. 

 
In 1961, a computer simulation of this type of memory task, called EPAM for Elementary 

Perceiver and Memorizer, was first described (Feigenbaum, 1995).  This model used a 
discrimination learning process to create a discrimination net to represent remembered CVCs.  
This discrimination net was very similar to modern decision trees used by computer scientists for 
pattern recognition (e.g., Quinlan, 1986). Each branch of Feigenbaum's discrimination net was a 
test that would distinguish one CVC from another.  Each terminal leaf of the discrimination net 
was one of the component letters of a CVC.  During learning, EPAM would grow its discrimination 
net using the minimum amount of information required.  As more items were added to the net, the 
early discrimination tasks might start to fail, which allowed EPAM to model interference effects in 
paired-associate learning. 
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One of the key design decisions in EPAM was the assumption that the primitive symbols 

in the discrimination net were individual letters. Feigenbaum and Feldman (1995) made this 
design decision for the very plausible reason "letters are familiar and are well-learning units for 
the adult subject” (p. 301).  However, it turns out that this design decision is theory-laden.  In one 
of my first experiences with computer simulation in a Minds and Machines course taught by 
Zenon Pylyshyn at the University of Western Ontario, we started with an EPAM model that used 
Feigenbaum’s coding format.  We then revised the model by making a different design decision 
about the internal symbols.  In the revised model, we described each letter as a set of visual 
features.  As a result, the discrimination net terminated in featural subcomponents of a CVC’s 
component letters.  The revised model had a great deal of difficulty learning any paired 
associates, indicating that the choice of internal representation strongly affects the model's 
performance. 

 
2.2.2.2 The Relevant Formalization Problem 

 
Hodges (1983) describes a problem that mathematician Alan Turing encountered when 

he formalized a method for playing chess.  "Alan had all the rules written out on its paper, and 
found himself torn between executing the moves that his algorithm demanded, and doing what 
was obviously a better move.  There were long silences while he totted up the scores and chose 
the best minimax ploy, hoots and growls when he could see it missing chances" (p. 440).  This 
illustrates a disadvantage that I will call the relevant formalization problem.  After you formalize a 
model, like Turing, you have to accept its bad properties along with the good. The relevant 
formalization problem occurs when this is not done, because there is a strong temptation to 
selectively focus on a formalization’s successes, and ignore its failures. 

 
My own experience with the relevant formalization problem came when I taught myself 

connectionism by programming the equations in a popular account of the generalized delta rule 
(Rumelhart, Hinton, and Williams, 1986b). After programming the equations, I tested my work by 
trying to train networks on the problems that Rumelhart, Hinton, and Williams described.  To my 
dismay, I found that in several cases my program didn't converge to a trained connectionist 
network.  Thinking that there must be a bug in my code, I spent a great deal of time poring over it, 
and was frustrated by failing to find any errors.  It turned out that my code was correct, but that in 
many cases it was failing to converge because the network connection weights were driving the 
system into a local minimum.   

 
I should have expected this, because the generalized delta rule is, in principle, subject to 

this kind of problem (Minsky & Papert, 1988).  However, I had different expectations because, in 
my opinion, Rumelhart, Hinton, and Williams (1986b) had fallen into the relevant formalization 
problem.  They reported that "we do not know the frequency of such local minima, but our 
experience with this and other problems is that they are quite a rare.  We have found only one 
other situation in which a local minimum has occurred in many hundreds of problems of various 
sorts” (p. 332).  My own experience with this kind of network is that problems like local minima 
are much more frequent. 

 
Having to take the formalization seriously can be extremely productive.  One excellent 

example of this is found in work that uses production systems to model human search of short-
term memory (Newell, 1973), and is described in the paragraphs that follow. 

 
Sternberg (1969) reported one famous study of short-term memory.  In the Sternberg 

memory task, subjects were given a string of digits to hold in short-term memory.  After a set 
delay, subjects were presented an additional probe digit.  Their task was to say whether or not 
the probe was a member of the memorized list.  The dependent measure in this experiment was 
reaction time.  Sternberg found a linear increase in response time as a function of the number of 
digits in the memorized list.  Sternberg also found that the slope of the reaction time function for 
lists that did not contain the probe was twice the slope of the reaction time function for lists that 
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did.  Sternberg used these results to propose a self-terminating serial search model of short-term 
memory; this was one of the first experiments that demonstrated how reaction time data could be 
used to infer the properties of internal processes. 

 
Newell (1973) described a series of production system models of the Sternberg memory 

task.  Production systems are described in more detail later in Chapter 5.  For the time being, a 
production system is essentially a set of condition-action pairs that scan a memory.  When the 
contents of the memory match a production’s condition, then it takes control of the memory and 
performs its action.  Usually this action involves changing the contents of the memory, so that 
some other production’s condition might be met. 

 
Newell (1973) found that it was very easy to create fairly simple production system 

models of the Sternberg memory task.  In fact, he describes seven different production system 
models written in a language called PSG.  Each of these models was capable of making the 
correct response when given the probe.  However, only one of these models generated response 
latency functions that resembled those of human subjects.  Interestingly, this production system 
was not a model of search.  Instead, it was a model of a general encoding and decoding scheme 
that could be used to perform the Sternberg task, as well as other basic tasks in cognitive 
psychology. 

 
Given this result, it would have been quite reasonable for Newell (1973) to report only his 

last production system model.  However, had he done so, he would have fallen victim to the 
relevant formalization problem.  This is because one of his basic assumptions was that 
production systems described the functional architecture of human cognition.  “In this view PSG 
represents the basic structure of the human information processing system.  It follows that any 
program written in PSG should be a viable program for the human subject” (p. 494).  As a result, 
in addition to coming up with one model that fits the human reaction time data, Newell must come 
up with a theory about why humans might use that production system, and not any of the other 
six, some of which are simpler.  “Our example makes clear that multiple production systems are 
possible.  Without a theory of which system is selected the total view remains essentially 
complete”. 

 
Newell (1973) went on to explore why an encoding model for performing the Sternberg 

memory task might be more adaptive than other possible production systems.  He proposed that 
for the Sternberg task, short-term memory is unreliable, and an encoding model of memory 
processing is better at dealing with this unreliability.  He also showed how an encoding strategy 
works well for a variety of other tasks, which is not the case for the simpler production system 
models that he was able to devise.  However, Newell also identified plausible alternatives to the 
encoding model that are worthy of further exploration.  In short, by avoiding the relevant 
formalization problem, Newell was able to develop a rich and detailed understanding of the 
Sternberg memory task that went far beyond what would be possible by only having a single, 
successful model that fit the data. 

 
2.2.2.3 The Communication Problem 

 
In formalizing a theory, a typical goal is to convert a set of informal verbal statements into 

a set of precise expressions that can be manipulated by some formal mechanism – mathematics, 
logic, or an algorithm.  With this goal in mind, it is apparent that a theory will be more technical 
after formalization than it was before.  This leads to another problem that must be faced: 
communicating the formalization to others, including those who might be interested in the domain, 
but not as interested in the technical details of the formalization. 

 
Zeigler (1976) points out that the construction and testing phase of modeling can be quite 

exciting – often more exciting than recasting the model into a form for general distribution.  As a 
result, “once the modeling challenge has been successfully overcome and the modeler’s own 
curiosity satisfied, he may find it difficult to become enthusiastic about the task of clarifying it for 
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himself and communicating to others what he has accomplished” (p. 7).  But clarification and 
communication are both required if the model is to have any impact. 

 
Zeigler (1976) proposes that the effective communication of a model involves the 

following aspects.  First, the researcher must generate an informal description of the model and 
its underlying goals and assumptions.  Second, the researcher must provide a formal description 
of the model, including a presentation of the program used if the model is a simulation.  Third, the 
researcher should present the tests of the model, including results and analysis.  Fourth, the 
researcher should generate some conclusions about the model’s range of application, validity, 
and cost.  Finally, the researcher should relate his or her current model to both past and future 
models. 

 
Zeigler (1976) notes that when the model is communicated, two different audiences must 

be kept in mind.  One audience is the set of potential users of the model or its variations.  The 
other audience is composed of  “people who may not use the program or model directly but may 
make other uses of it in relation to their own research and development – call them the 
colleagues” (p. 8).  With these two different audiences in mind, Zeigler suggests that the “informal 
description of the model is the most natural and effective way of establishing contact with the 
reader’s intuition and of interfacing your world model with his world model” (p. 9).  However, it is 
important to realize that with the audience of colleagues, this informal account might be the only 
way that contact is made.  They may not be interested in paying the necessary attention to the 
more formal descriptions of the model, because they are an audience that isn’t interested in using 
it. 

 
 2.2.3 Exploration Of Complex Domains 

 
We have already seen that one advantage of modeling is the rigorous specification of 

theory.  A second advantage is that models permit the exploration of complex ideas.  “Simulations 
can be of value in this way either because a seemingly attractive idea might otherwise be too 
unconstrained to support predictions and tests or because a complex model may resist analytic 
exploration” (Lewandowsky, 1993, p. 237).  Let us briefly explore each of these ideas. 

 
2.2.3.1 The Economy Of Models 

 
In mathematical psychology, as we will see in Chapter 4, one usually attempts to define a 

relationship between one set of variables and another.  Within this framework, it sometimes is the 
case that there are a great many variables to be explored.  Each of these variables can take on 
one of many different numerical values.  The problem for a mathematical psychologist is to 
explore the set of possible settings for the variables in order to determine the best possible 
model.  Mathematical psychologists have realized that the fastest, most economical approach to 
exploring the parameter space for a model is to use computer simulations (Estes, 1975; Luce, 
1989, 1997, 1999).  

 
The economy of modeling provides advantages for scientists who have little direct 

interest in mathematical psychology.  Many are interested in studying systems that are highly 
complex, and that are also very difficult and expensive to examine experimentally. For example, 
neuroscientists who study the nervous systems of animals have to face the combined expenses 
of maintaining animals, of providing resources for drug or surgical treatments, and of histological 
examination of manipulated nervous systems – not to mention the ethical expenses of sacrificing 
animals for the advancement of knowledge. When a neuroscience experiment is performed, it 
would be very valuable to have a strong sense beforehand that the experiment is going to work, 
and is also going to provide important information.  This kind of research is simply too expensive 
for “fishing” for interesting results. 

 
One approach for increasing the likelihood that an experiment is going to be successful is 

to use computer simulation techniques to identify key issues, or predict the likely outcomes of 
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experiments.  The simulation is itself much less expensive to run, and can be easily used to 
simulate a variety of experiments.  One can use the simulation to “fish” for interesting results in a 
fashion that is far faster and cheaper than by actually performing the experiments on animals.  
Once an interesting set of predictions has been identified using the computer simulation, the 
result can be verified by actually performing the experiment on animals.  The expectation is that 
the experiment should be successful because of all of the simulation work that was carried out 
beforehand.  The results of the experiment can then be used to refine the computer simulation, so 
that it reflects an advancing state of knowledge, and so that it can be used to predict more 
sophisticated results in the future. 

 
One excellent example of exploiting the economy of modeling is found in the research of 

neuroscientist Gary Lynch and his colleagues (e.g., Lynch, 1986).  Lynch is primarily concerned 
with understanding the neural mechanisms underlying memory, and uses the olfactory system of 
the rat as his primary research focus.  Lynch’s research has uncovered many precise details 
about the neural circuitry that permits rats to remember and process information about different 
smells.  A great deal of this information has been the result of experiments on rat brains.  
However, computer simulation has also been a central tool in Lynch’s research program. 

 
For instance, Granger, Ambros-Ingerson, and Lynch (1989) developed a computer 

simulation of olfactory cortex.  The simulation consisted of 100 input cells (simulating axons of the 
lateral olfactory tract) randomly and sparsely connected to up to 500 cells in the olfactory cortex.  
Processing units in the simulation have a number of mathematical properties that model such 
characteristics as synaptic conductance, dendritic summation, excitatory and inhibitory signal 
characteristics, spike generation, and the speed of axon transmission.  Depending upon the kinds 
of pulses transmitted to the network, it can learn by modifying the pattern of connectivity between 
its processing units.  Granger et al. found that after learning a set of distinct groups of odors, the 
simulation’s initial response to a cue odor only indicated the category to which it belonged.  
Subsequent responses to the same stimulus successively subdivided the category into 
increasingly specific encodings of the original cue.  In other words, the model was demonstrating 
its ability to organize olfactory memories at a number of different levels of detail. 

 
Importantly, the simulation created by Granger et al. (1989) led to at least five different 

predictions that were specific, and which were also not intuitively obvious.  For example, in the 
simulation only a small number of cells responded to a specific input.  As well, different cells 
responded when the simulation was presented different “sniffs”, with the patterns of which cells 
were firing reflecting similarities and differences among odor cues.  It is these sorts of specific, 
surprising predictions made by the model that can be selected as likely candidates for empirical 
study in animal systems.  In the Lynch lab, there is a constant back-and-forth exchange of 
information between simulations and experiments, with each information exchange resulting in a 
more and more detailed understanding of the neural circuitry. 

 
2.2.3.2 Beyond Mathematical Boundaries 

 
In many disciplines there can be a marked competition between theorists and 

experimentalists.  In physics, Lederman (1993, p. 13) observes, “In the eternal love-hate relation 
between theory and experiment, there is a kind of scorekeeping. How many important discoveries 
were predicted by theory?  How many were complete surprises?”  The tension between theory 
and experiment is also a frequently observed characteristic of psychology (Kukla, 1989; Paivio, 
1986, Chaps 1-2).  

 
One reason for this tension is that it is possible for theorists to make predictions about 

observations that take years for experimentalists to confirm.  Many examples of this can be found 
in physics (e.g., Bodanis, 2000). For example, Einstein’s general theory of relativity was first 
publicized in 1915.  One of its major predictions, of the curvature of space, could not be 
empirically confirmed until observations of star positions during total solar eclipses were made in 
1919 and 1922.  In the 1930s, Chandrasekhar used special relativity theory to predict that white 



 - 9 - 

Minds And Machines © M.R.W. Dawson 31/01/2003 

dwarf stars could only exist up to a certain mass.  He proved that if a star were larger than this 
limit, then it would ultimately collapse into a denser object (a neutron star or a black hole).  This 
theory was extremely controversial when it was originally proposed, and was not empirically 
supported until observations in the 1960s that discovered pulsars, and which later demonstrated 
that pulsars were rotating neutron stars. 

 
In these examples from physics, formal theories anticipated experimental results by years 

or decades.  With the advent of computer simulation techniques, however, it is now possible to 
experimentally study models of systems whose complexity cannot yet be captured by 
mathematical formalisms. 

 
In a wide variety of fields, researchers are interested in the properties of systems that 

have a large number of (often simple) components.  Frequently, one component can influence the 
behavior of neighboring components in a manner that can only be captured by nonlinear 
equations.  Furthermore, the behavior of one component’s neighbors can influence the behavior 
of that component via feedback.  In spite of the fact that these systems do not have any 
component that serves as a central controller, they often exhibit interesting, emergent, and 
systematic regularities.  Examples of such systems include slime molds, insect colonies, and 
biological neural networks, to name a few.  A new discipline, called complexity theory, is 
concerned with studying the properties shared by these diverse systems (Holland, 1998; 
Johnson, 2001; Waldrop, 1992).  

 
The many nonlinear interactions in a distributed system like an ant colony or a brain 

make it very difficult to summarize the behavior of the system as a whole mathematically.  
However, it is possible to program a computer to simulate the interactions between system 
components.  This means that the system can be studied, and understood, by making empirical 
observations about the behavior of the computer simulation even in the absence of formal theory.  
The fields of artificial life, genetic algorithms, artificial neural networks, and synthetic psychology 
all depend crucially upon the fact that one can use computers to explore regularities in domains 
that are currently too complicated to describe in formal equations. 

 
2.2.4 Problems With Exploring Complex Domains 

 
From the preceding section, it is clear that models provide a medium that provides many 

advantages for researchers interested in exploring complicated ideas in an efficient, inexpensive 
manner.  These ideas can even be explored in advance of any mathematical account of the 
domain.  However, while the ability to explore complex domains is a definite advantage of 
modeling, it can lead to some interesting disadvantages.  Two of these are considered in the 
subsections below.  

 
2.2.4.1 Bonini’s Paradox 

 
Dutton and Starbuck (1971) used the name Bonini’s paradox to identify one problem with 

computer simulations of complex phenomena. Bonini’s paradox, named after Stanford business 
professor Charles Bonini, occurs when a computer simulation is at least as difficult to understand 
as the phenomenon that it was supposed to illuminate.  “The computer simulation researcher 
needs to be particularly watchful of the complexity dilemma.  If he hopes to understand complex 
behavior, he must construct complex models, but the more complex the model, the harder it is to 
understand. ... As more than one user has realized while sadly contemplating his convoluted 
handiwork, he can easily construct a computer model that is more complicated than the real 
thing.  Since science is to make things simpler, such results can be demoralizing as well as self-
defeating” (Dutton & Briggs, 1971, p. 103).  

 
While any model may fall into this trap, Bonini’s paradox is particularly relevant for 

researchers who use connectionist networks.  Connectionist models are introduced in more detail 
later in this book, and are essentially brain-like networks of simple nonlinear processors that can 



 - 10 - 

Minds And Machines © M.R.W. Dawson 31/01/2003 

learn to solve complex pattern recognition problems.  Connectionist researchers freely admit that 
in many cases it is extremely difficult to determine how their networks accomplish the tasks that 
they have been taught. “If the purpose of simulation modeling is to clarify existing theoretical 
constructs, connectionism looks like exactly the wrong way to go.  Connectionist models do not 
clarify theoretical ideas, they obscure them” (Seidenberg, 1993, p. 229). 

 
Connectionist networks can fall prey to Bonini’s paradox for several reasons.  First, 

because connectionist models are usually taught by example, they do not require a researcher to 
come up with detailed theory of how to perform a pattern recognition task prior to creating the 
model.  In other words, connectionist networks allow “for the possibility of constructing 
intelligence without first understanding it” (Hillis, 1988, p. 176). Second, one can train 
connectionist networks that are extremely large; their sheer size and complexity makes it difficult 
to understand their internal workings.  For example, Seidenberg and McClelland’s (1989) network 
for computing a mapping between graphemic and phonemic word representations uses 400 input 
units, up to 400 hidden units, and 460 output units.  Determining how such a large network works 
is an intimidating task.  This is particularly true because in many PDP networks, it is very difficult 
to consider the role that one processing unit plays independent from the role of the other 
processing units to which it is connected (see also Farah, 1994). 

 
Difficulties in understanding how a particular connectionist network accomplishes the task 

that it has been trained to perform has raised serious doubts about the ability of connectionists to 
provide fruitful theories about cognitive processing.  McCloskey (1991) warns “connectionist 
networks should not be viewed as theories of human cognitive functions, or as simulations of 
theories, or even as demonstrations of specific theoretical points” (p. 387).  In a nutshell, this 
dismissal was based largely on the view that connectionist networks are generally uninterpretable 
(see also Dawson & Shamanski, 1994).  It is clear that the success of connectionist networks, or 
of any other type of model, to contribute to psychological theory, depends heavily upon a 
researcher’s ability to avoid Bonini’s paradox.  Later in this book we will see several examples of 
how this can be accomplished. 

 
2.2.4.2 The Validation Problem 

 
In Chapters 3 and 4, we will see that two common modeling approaches in psychology 

are models of data and mathematical modeling.  Both use mathematical equations to describe 
and predict behavioral regularities.  The equations represent a theoretical statement about 
behavior.  The validity of the theoretical statement is usually assessed using “goodness of fit”:  
the equation makes certain predictions about what behavior should be observed in experimental 
subjects.  The validity of the theory depends upon the extent that the predictions are consistent 
with these empirical observations. 

 
However, the fact that new modeling techniques such as computer simulation permit the 

study of systems that cannot be formally described had led to a situation in which this traditional 
notion of theory validation does not work very well.  Mathematical psychologists, for example, are 
deeply disturbed by the fact that it is very difficult to formulate a procedure for measuring the 
validity of computer simulations (Estes, 1975; Luce, 1999). 

 
This problem is compounded by the bottom-up strategies used in the simulations that are 

of concern to complexity theorists.  In many instances, these simulations involve defining the 
interactions between neighboring components in the model, without being concerned with the 
overall outcome of the simulation.  In other words, rather than modeling a particular phenomenon 
(which we will see is the typical top-down strategy used to create models of data and to propose 
mathematical models), complexity theorists are interested in discovering what surprising 
properties emerge from the interactions of known components.  In many cases, they may have no 
idea what kinds of regularities will emerge from their simulation. 
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This makes it particularly difficult to validate a complexity theorist’s simulation, because it 
may not even be known a priori what the model is a model of.  This is one of the reasons that 
many of these simulations are viewed skeptically.  For instance, these models have been 
described as being “fact free science” by evolutionary biologist John Maynard Smith (Mackenzie, 
2002). Some have argued that it is impossible to verify or validate these kinds of simulations 
(Oreskes, Shrader-Frechette, & Belitz, 1994). “Like a novel, a model may be convincing – it may 
ring true if it is consistent with our experience of the natural world.  But just as we may wonder 
how much the characters in a novel are drawn from real life and how much is artifice, we might 
ask the same of a model:  How much is based on observation and measurement of accessible 
phenomena, how much is based on informed judgment, and how much is convenience?”  

 
Validating a model is a difficult problem that is a central concern of psychology and 

cognitive science (Fodor, 1968; Pylyshyn, 1980, 1984). For the time being, let us simply be aware 
that this problem exists.  In several of the later chapters we will have an opportunity to consider 
how synthetic psychologists approach this problem. 

 
2.2.5 Serendipity  

 
We have already covered two of the main advantages of models: the rigorous 

specification of theory and the ability to explore complicated domains.  There is one further 
advantage to be considered – the ability of a model to reveal serendipitous discoveries.  
Lewandowsky (1993) is concerned by the fact that “a widespread opinion among critics is that 
theories or simulations somehow stand in the way of serendipitous discovery” (p. 238).  He goes 
on to point out the flaws in this view. 

 
In the next three chapters of this book, the notion of serendipity will be important in 

distinguishing different kinds of models.  In particular, I will be arguing that some kinds of models 
(models of data, mathematical models) provide less opportunity to surprise a researcher than do 
others (computer simulations).  However, as a prelude to that more detailed discussion, let us 
briefly consider some general aspects of how models can lead to surprises. 

 
2.2.5.1 Emergence And Surprise 

 
One of the reasons that some researchers believe that models cannot generate surprises 

is because systems like computer simulations are deterministic.  If a computer can only follow its 
program, then it stands to reason that it should be impossible for the program to surprise the 
programmer (Haugeland, 1985).  

 
The difficulty with this logic is that it assumes that the purpose of the programmer is to 

create a program that is responsible for carrying out some overall, holistic, behavior.  However, 
sometimes this is not the programmer’s goal.  Indeed, in many situations the programmer is 
concerned with programming simple and well-defined local interactions between the components 
of a system. “Local turns out to be the key term in understanding the power of swarm logic.  We 
see emergent behavior in systems like ant colonies when the individual agents in the system pay 
attention to their immediate neighbors rather than wait for orders from above. They think locally 
and act locally, but their collective action produces global behavior” (Johnson, 2001, p. 74). 

 
In many situations, the programmer will have complete understanding of the programmed 

local interactions, but will be unable to predict the global behavior that the local interactions 
produce.  It is these emergent properties that are surprising, and which are capable of providing 
new insights. 

 
2.2.5.2 An Example: Banding In Value Units 

 
One example of a serendipitous result from a model comes from my own laboratory’s 

research on connectionist networks.  As we will see in more detail later in this book, a 



 - 12 - 

Minds And Machines © M.R.W. Dawson 31/01/2003 

connectionist model is a network of simple processors that send numerical signals to one 
another.  One of the basic tasks of any processing unit in this kind of network is to add up the 
total incoming signal, and to convert it into an internal level of activity.  Mathematically, this is 
done using an equation called an activation function. 

 
By 1989, Don Schopflocher and I had developed a method of training connectionist 

networks that used a different activation function than is found in typical connectionist networks 
(Dawson, 1990; Dawson & Schopflocher, 1992). We called our architecture networks of value 
units, using terminology borrowed from Ballard (1986), because the activation function tuned the 
processor so that it had a strong response to a narrow range of incoming signal, and had a very 
weak response when the incoming signal was too strong or too weak to fall in this narrow range 
(for more details, see Chapters 10 and 11). 

 
After this architecture had been published, we continued to study it because it had 

several advantages that we wanted to exploit.  However, one problem that we were concerned 
about was Bonini’s paradox: the networks that we trained had an internal structure that was very 
difficult to understand.  We expended a great deal of fruitless effort trying to develop techniques 
for figuring out the “program” that was encoded in the connection weights of our networks. 

 
In the winter of 1993, we literally stumbled upon an emergent property of the value unit 

architecture that aided network interpretation immeasurably.  One of my philosophy graduate 
students, Istvan Berkeley, had trained a network of value units to solve a logic problem developed 
by Bechtel and Abrahamsen (1991). He had devoted hundreds of hours to examining the 
structure of this particular network.  One kind of data that we collected in this process was 
analogous to “wiretapping” of neurons by neuroscientists: we simply recorded the activity of each 
processor within the network to each stimulus that the network was presented. 

 
In an effort to help interpret the network, Don Schopflocher took a copy of the 

“wiretapping” data, and attempted some multivariate analyses.  This didn’t provide any 
breakthroughs.  However, Don did notice that in the data a lot of numbers were repeated.  He 
didn’t make anything of this, and neither did I.  In fact, I pretty much ignored this observation.  
Importantly, the very next day, Istvan – who had been looking at the very same data – came to 
me and repeated, almost word for word, Don’s observation.  Being told the same thing twice 
finally captured my attention, and I took the data and started to perform some graphical analyses. 

 
In very short order, I had selected a particular type of graph called a jittered density plot.  

One such graph can be drawn for each one of our processing units.  In a jittered density plot, 
each dot in the graph represents the unit’s response to one stimulus pattern.  The x-position of 
the dot indicates the actual level of unit activity.  The y-position of the dot is randomly selected, 
and is used to try and prevent dots from overlapping each other as much as possible. 

 
Now, for a standard processing unit, a jittered density plot is not very informative, 

because it is not very structured.  Usually it is just a smear of dots throughout the whole graph.  
Our serendipitous finding was that the jittered density plots for value units were much more 
structured.  Rather than being an uninformative smear, as in the example above, we found that 
the plots for the processors in Istvan’s network were organized into tight bands, usually with a 
great deal of space separating one band from another.  

  
We were tremendously excited and surprised by this result, and our excitement grew and 

grew as each new jittered density plot came out of the printer.  A whole new set of questions 
jumped to mind.  Why did the bands emerge?  Was there anything in common among the subset 
of patterns that fell into one band?  In answering these questions, we discovered that the bands 
provided a method for identifying the kinds of features that were being detected by each unit in 
the network.  We were then able to use these features to determine how the network was solving 
the logic problem, and to make an argument that connectionist networks might be more symbolic 
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than was traditionally thought (Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995; 
Dawson, Medler, & Berkeley, 1997). 

 
More recently, we have developed a much stronger formal understanding of why banding 

occurs, and have used it to predict and discover banding for other problems and for other 
architectures (McCaughan, Medler, & Dawson, 1999).  We have also developed more 
sophisticated interpretation techniques than the purely local ones that we reported in 1995 
(Dawson, Boechler, & Valsangkar-Smyth, 2000; Dawson, Medler, McCaughan, Willson, & 
Carbonaro, 2000; Dawson & Piercey, 2001; Medler, McCaughan, Dawson & Willson, 1999). 
However, all of these advances have depended upon our original lucky discovery.  Don 
Schopflocher and I had no idea that we were going to produce this result when we developed our 
learning rule in 1989.  Indeed, we were using this algorithm for approximately 4 years – and 
encountering numerous dead ends in network interpretation – before we chanced upon this 
discovery. 

 
2.2.6 Luck: Good And Bad 

 
For the other two advantages of modeling, the rigorous specification of theory and the 

ability to explore complex phenomena, we have outlined accompanying disadvantages.  What 
possible disadvantages might one find with an approach that permits serendipitous discovery?  
The subsections below briefly consider three different kinds of concerns. 

 
2.2.6.1 Is Good Luck Bad Science? 

 
One concern that is often raised when serendipity is a key component of a research 

program is that the program doesn’t seem to be very scientific.  The traditional view of science is 
that it is a careful, gradual, goal-directed advancement of knowledge, in which current information 
is used to generate and test new hypotheses.  Hypotheses “are the first rungs of the ladder of 
science, becoming theories as the harder factual sides of the ladder are extended, and finally 
facts when the ladder makes firm contact with structures established by other ladders of 
hypothesis” (Hocking, 1963, p. 3). 

 
However, “science seldom proceeds in the straightforward logical manner imagined by 

outsiders.  Instead, its steps forward (and sometimes backward) are often very human events in 
which personalities and cultural traditions play major roles” (Watson, 1968, p. ix). Put another 
way, “the discoveries of penicillin, X-rays, and America have apparently failed to alert students of 
memory to the possibility of serendipitous findings within their own field” (Watkins, 1990, p. 333). 

 
Nevertheless, there is still some sense that if the advancement of one’s research field 

depends overtly on serendipity, then this reflects a weakened dependence on theory or on prior 
knowledge.  This simply isn’t so.  In very general terms, we will see that advances in synthetic 
psychology come about by taking a set of components, by letting them interact, and by observing 
surprising emergent phenomena.  However, the role of theory and prior knowledge in this 
endeavor is still fundamentally important, because it guides decisions about what components to 
select, and about the possible dynamics of their interaction. In the words of Benjamin Franklin, 
diligence is the mother of good luck. 

 
2.2.6.2 Good Luck, Bad Control 

 
We will see later that one of the modern arguments in favor of adopting a synthetic 

approach to modeling, rather than analyzing a system into its components, is the opportunity for 
generating simpler theories. “Analysis is more difficult than invention in the sense in which, 
generally, induction takes more time to perform than deduction: in induction one has to search for 
the way, whereas in deduction one follows a straightforward path. A psychological consequence 
of this is the following: when we analyze a mechanism, we tend to overestimate its complexity” 
(Braitenberg, 1984). 
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However, if many of the advances of synthetic psychology are going to depend upon 

emergent surprises, then this view tells only half the story.  There are many solid theoretical and 
empirical arguments that make the point that analytic approaches are difficult, and lead to overly 
complicated theories.  However, a synthetic approach may be no less difficult.  The tacit view of 
proponents of the synthetic approach, like Braitenberg, is that if one can build a system, then one 
must be able to understand it.  However, we have already seen that this view is not completely 
correct.  The idea that models can lead to serendipitous results comes from the situation in which 
a modeler has a very precise understanding of a system at one level (i.e., the level of the 
components), but has little understanding of the system at another level (i.e., a higher level at 
which emergent surprises can be seen). 

 
In other words, modelers in synthetic psychology are likely going to be in a situation in 

which they have a high degree of control of their systems at a microlevel, but have much less 
control of their systems at a macrolevel.  Furthermore, they may have little understanding about 
how microlevel processes result in macrolevel behaviors.  We will see later in this book that the 
only way to deal with this problem is to combine synthetic and analytic approaches.  After one 
discovers an emergent surprise in a synthetic model, a good deal of effort is going to be required 
to analyze the model in order to account for how the surprise emerged.  Finding lucky surprises 
will not suffice.  Synthetic psychology is charged with explaining the surprises too. 

 
2.2.6.3 Going Beyond The Model 

 
One final concern with the serendipity of modeling is that it requires a researcher to go 

beyond the direct intent of his or her model.  This is a problem because this requires the 
researcher to move against a tradition that is a strong, tacit component of experimental 
psychology, as we will see in the next two chapters.  When many psychologists think of modeling, 
their view is that the purpose of a model is to fit or mimic experimental data.  The reason for this 
belief is that it is central to two types of models that have a long history in psychology, models of 
data and mathematical models.  In general, if a model of data or a mathematical model does not 
fit the data, then the model is abandoned. 

 
The possibility of discovering new and surprising characteristics of a model requires that 

this very narrow view of what a model is intended to do, or of how a model should be evaluated, 
must be either abandoned or suspended.  This is because the only way that a model can surprise 
is if one examines how it deals with situations that it was not originally intended to face.  Once my 
students have developed a model of some phenomena, I always ask them to find out what they 
can “get from the model for free”.  My request is an attempt to encourage them to determine 
whether their model has any interesting or surprising emergent properties that they may not have 
considered.  I also tell them that if a model doesn’t have any surprises, then it may not be a very 
good model.  My own experience is that this is true – but to be aware of this truth, one must 
abandon the notion that the only purpose of a model is to fit data that has already been collected 
from subjects!  
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